Wind speed estimation based control of Stand-Alone DOIG for wind energy conversion system

K. Kaur, T. Saha, S. N. Mahato, S. Banerjee
{"title":"Wind speed estimation based control of Stand-Alone DOIG for wind energy conversion system","authors":"K. Kaur, T. Saha, S. N. Mahato, S. Banerjee","doi":"10.1109/ICIT.2014.6894984","DOIUrl":null,"url":null,"abstract":"A sensor less wind speed estimation scheme for variable-speed wind turbine generators has been analysed in this paper. Neural network principles are applied for sensor less wind speed estimation. Model of one pitch controlled horizontal axis wind turbine along with DOIG based generation system has been used for this study. The aerodynamic characteristics of the wind turbine are approximated by a radial basis function network based nonlinear input-output mapping. Based on this mapping, the wind speed is estimated from the measured turbine mechanical power, turbine angular speed and pitch angle. The resulting WTG system efficiently and reliably estimates the wind speed without any mechanical anemometers.","PeriodicalId":240337,"journal":{"name":"2014 IEEE International Conference on Industrial Technology (ICIT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2014.6894984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A sensor less wind speed estimation scheme for variable-speed wind turbine generators has been analysed in this paper. Neural network principles are applied for sensor less wind speed estimation. Model of one pitch controlled horizontal axis wind turbine along with DOIG based generation system has been used for this study. The aerodynamic characteristics of the wind turbine are approximated by a radial basis function network based nonlinear input-output mapping. Based on this mapping, the wind speed is estimated from the measured turbine mechanical power, turbine angular speed and pitch angle. The resulting WTG system efficiently and reliably estimates the wind speed without any mechanical anemometers.
基于风速估计的风能转换系统独立DOIG控制
本文分析了一种无传感器的变速风力发电机组风速估计方案。将神经网络原理应用于无传感器风速估计。采用单螺距控制的水平轴风力机模型及基于DOIG的发电系统进行了研究。采用基于径向基函数网络的非线性输入输出映射方法逼近风力机的气动特性。在此基础上,根据实测的涡轮机械功率、涡轮角速度和俯仰角估算风速。由此产生的WTG系统在没有任何机械风速计的情况下有效可靠地估计风速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信