Stationary graph processes: Nonparametric spectral estimation

Santiago Segarra, A. Marques, G. Leus, Alejandro Ribeiro
{"title":"Stationary graph processes: Nonparametric spectral estimation","authors":"Santiago Segarra, A. Marques, G. Leus, Alejandro Ribeiro","doi":"10.1109/SAM.2016.7569746","DOIUrl":null,"url":null,"abstract":"Stationarity is a cornerstone property that facilitates the analysis and processing of random signals in the time domain. Although time-varying signals are abundant in nature, in many practical scenarios the information of interest resides in more irregular graph domains. The contribution in this paper is twofold. First, we propose several equivalent notions of weak stationarity for random graph signals, all taking into account the structure of the graph where the random process takes place. Second, we analyze the properties of the induced power spectral density along with nonparametric approaches to estimate it, including average and window-based periodograms.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Stationarity is a cornerstone property that facilitates the analysis and processing of random signals in the time domain. Although time-varying signals are abundant in nature, in many practical scenarios the information of interest resides in more irregular graph domains. The contribution in this paper is twofold. First, we propose several equivalent notions of weak stationarity for random graph signals, all taking into account the structure of the graph where the random process takes place. Second, we analyze the properties of the induced power spectral density along with nonparametric approaches to estimate it, including average and window-based periodograms.
平稳图处理:非参数谱估计
平稳性是时域随机信号分析和处理的基础属性。虽然时变信号在本质上是丰富的,但在许多实际场景中,感兴趣的信息驻留在更不规则的图域中。本文的贡献是双重的。首先,我们提出了随机图信号弱平稳性的几个等效概念,所有这些概念都考虑到随机过程发生的图的结构。其次,我们分析了感应功率谱密度的性质,以及估计它的非参数方法,包括平均周期图和基于窗口的周期图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信