Asynchronous Channel Training in Massive MIMO Systems

Xun Zou, H. Jafarkhani
{"title":"Asynchronous Channel Training in Massive MIMO Systems","authors":"Xun Zou, H. Jafarkhani","doi":"10.1109/GLOCOM.2016.7841614","DOIUrl":null,"url":null,"abstract":"Pilot contamination has been regarded as the bottleneck in time division duplexing (TDD) multi- cell massive multiple-input multiple-output (MIMO) systems. The pilot contamination problem cannot be addressed with large-scale antenna arrays. We provide a novel asynchronous channel training scheme to reduce the impact of pilot contamination without the cooperation of base stations. The scheme takes advantage of sampling diversity by inducing intentional timing mismatch. Then, the optimal linear minimum mean square error (LMMSE) estimator is designed to minimize the channel matrix estimation error. Finally, simulation results demonstrate that our scheme can provide significant performance improvement compared with the conventional synchronous systems that suffer from pilot contamination.","PeriodicalId":425019,"journal":{"name":"2016 IEEE Global Communications Conference (GLOBECOM)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2016.7841614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Pilot contamination has been regarded as the bottleneck in time division duplexing (TDD) multi- cell massive multiple-input multiple-output (MIMO) systems. The pilot contamination problem cannot be addressed with large-scale antenna arrays. We provide a novel asynchronous channel training scheme to reduce the impact of pilot contamination without the cooperation of base stations. The scheme takes advantage of sampling diversity by inducing intentional timing mismatch. Then, the optimal linear minimum mean square error (LMMSE) estimator is designed to minimize the channel matrix estimation error. Finally, simulation results demonstrate that our scheme can provide significant performance improvement compared with the conventional synchronous systems that suffer from pilot contamination.
大规模MIMO系统中的异步信道训练
导频污染一直被认为是时分双工(TDD)多小区大规模多输入多输出(MIMO)系统的瓶颈。大规模天线阵列无法解决导频污染问题。我们提出了一种新的异步信道训练方案,以减少导频污染的影响,而无需基站的合作。该方案通过诱导有意的时序失配来利用采样分集。然后,设计了最优线性最小均方误差(LMMSE)估计器,使信道矩阵估计误差最小。最后,仿真结果表明,与受先导污染的传统同步系统相比,我们的方案可以提供显着的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信