Activity Recognition From Smartphone Data Using WSVM-HMM Classification

M. Abidine, B. Fergani
{"title":"Activity Recognition From Smartphone Data Using WSVM-HMM Classification","authors":"M. Abidine, B. Fergani","doi":"10.4018/ijehmc.20211101.oa11","DOIUrl":null,"url":null,"abstract":"A lot of real-life mobile sensing applications are becoming available nowadays. The traditional approach for activity recognition employs machine learning algorithms to learn from collected data from smartphpne and induce a model. The model generation is usually performed offline on a server system and later deployed to the phone for activity recognition. In this paper, we propose a new hybrid classification model to perform automatic recognition of activities using built-in embedded sensors present in smartphones. The proposed method uses a trick to classify the ongoing activity by combining Weighted Support Vector Machines (WSVM) model and Hidden Markov Model (HMM) model. The sensory inputs to the classifier are reduced with the Linear Discriminant Analysis (LDA). We demonstrate how to train the hybrid approach in this setting, introduce an adaptive regularization parameter for WSVM approach, and illustrate how our proposed method outperforms the state-of-the-art on a large benchmark dataset.","PeriodicalId":375617,"journal":{"name":"Int. J. E Health Medical Commun.","volume":"247 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. E Health Medical Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijehmc.20211101.oa11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A lot of real-life mobile sensing applications are becoming available nowadays. The traditional approach for activity recognition employs machine learning algorithms to learn from collected data from smartphpne and induce a model. The model generation is usually performed offline on a server system and later deployed to the phone for activity recognition. In this paper, we propose a new hybrid classification model to perform automatic recognition of activities using built-in embedded sensors present in smartphones. The proposed method uses a trick to classify the ongoing activity by combining Weighted Support Vector Machines (WSVM) model and Hidden Markov Model (HMM) model. The sensory inputs to the classifier are reduced with the Linear Discriminant Analysis (LDA). We demonstrate how to train the hybrid approach in this setting, introduce an adaptive regularization parameter for WSVM approach, and illustrate how our proposed method outperforms the state-of-the-art on a large benchmark dataset.
基于WSVM-HMM分类的智能手机活动识别
如今,许多现实生活中的移动传感应用正在变得可用。传统的活动识别方法采用机器学习算法从智能手机收集的数据中学习并生成模型。模型生成通常在服务器系统上脱机执行,然后部署到手机上进行活动识别。在本文中,我们提出了一种新的混合分类模型,使用智能手机中内置的嵌入式传感器对活动进行自动识别。该方法采用加权支持向量机(WSVM)模型和隐马尔可夫模型(HMM)相结合的方法对正在进行的活动进行分类。使用线性判别分析(LDA)减少分类器的感官输入。我们演示了如何在这种情况下训练混合方法,为WSVM方法引入了一个自适应正则化参数,并说明了我们提出的方法如何在大型基准数据集上优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信