Additive Pattern Databases for Decoupled Search

Silvan Sievers, Daniel Gnad, Á. Torralba
{"title":"Additive Pattern Databases for Decoupled Search","authors":"Silvan Sievers, Daniel Gnad, Á. Torralba","doi":"10.1609/socs.v15i1.21766","DOIUrl":null,"url":null,"abstract":"Abstraction heuristics are the state of the art in optimal classical planning as\nheuristic search. Despite their success for explicit-state search, though,\nabstraction heuristics are not available for decoupled state-space search, an\northogonal reduction technique that can lead to exponential savings by decomposing\nplanning tasks. In this paper, we show how to compute pattern database (PDB)\nheuristics for decoupled states. The main challenge lies in how to additively employ\nmultiple patterns, which is crucial for strong search guidance of the heuristics. We\nshow that in the general case, for arbitrary collections of PDBs, computing the\nheuristic for a decoupled state is exponential in the number of leaf components of\ndecoupled search. We derive several variants of decoupled PDB heuristics that allow\nto additively combine PDBs avoiding this blow-up and evaluate them empirically.","PeriodicalId":425645,"journal":{"name":"Symposium on Combinatorial Search","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Combinatorial Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/socs.v15i1.21766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstraction heuristics are the state of the art in optimal classical planning as heuristic search. Despite their success for explicit-state search, though, abstraction heuristics are not available for decoupled state-space search, an orthogonal reduction technique that can lead to exponential savings by decomposing planning tasks. In this paper, we show how to compute pattern database (PDB) heuristics for decoupled states. The main challenge lies in how to additively employ multiple patterns, which is crucial for strong search guidance of the heuristics. We show that in the general case, for arbitrary collections of PDBs, computing the heuristic for a decoupled state is exponential in the number of leaf components of decoupled search. We derive several variants of decoupled PDB heuristics that allow to additively combine PDBs avoiding this blow-up and evaluate them empirically.
解耦搜索的加性模式数据库
抽象启发式算法是最优经典规划中最先进的启发式搜索算法。尽管抽象启发式在显式状态搜索方面取得了成功,但它不适用于解耦状态空间搜索,而解耦状态空间搜索是一种正交约简技术,可以通过分解规划任务来实现指数级的节省。在本文中,我们展示了如何计算解耦状态的模式数据库(PDB)启发式。主要的挑战在于如何叠加使用多个模式,这对启发式的强搜索引导至关重要。在一般情况下,对于任意pdb集合,解耦状态的启发式计算是解耦搜索叶分量数量的指数。我们推导了解耦的PDB启发式方法的几个变体,这些变体允许将PDB进行相加组合,以避免这种爆炸,并对它们进行经验评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信