Two-class Linear Discriminant Analysis for Face Recognition

H. K. Ekenel, R. Stiefelhagen
{"title":"Two-class Linear Discriminant Analysis for Face Recognition","authors":"H. K. Ekenel, R. Stiefelhagen","doi":"10.1109/SIU.2007.4298761","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel face recognition system that uses two-class linear discriminant analysis for classification. In this approach a single M-class linear discriminant classifier is divided into M two-class linear discriminant classifiers. This formulation provides many advantages like more discrimination between classes, simpler calculation of projection vectors and easier update of the database with new individuals. We tested the proposed algorithm on the CMU PIE and Yale face databases. Significant performance improvements are observed, especially when the number of individuals to be classified increases.","PeriodicalId":315147,"journal":{"name":"2007 IEEE 15th Signal Processing and Communications Applications","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 15th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2007.4298761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we present a novel face recognition system that uses two-class linear discriminant analysis for classification. In this approach a single M-class linear discriminant classifier is divided into M two-class linear discriminant classifiers. This formulation provides many advantages like more discrimination between classes, simpler calculation of projection vectors and easier update of the database with new individuals. We tested the proposed algorithm on the CMU PIE and Yale face databases. Significant performance improvements are observed, especially when the number of individuals to be classified increases.
人脸识别的两类线性判别分析
本文提出了一种利用两类线性判别分析进行分类的人脸识别系统。该方法将一个M类线性判别分类器分解为M个2类线性判别分类器。这个公式有很多优点,比如更容易区分类别,更简单地计算投影向量,更容易用新个体更新数据库。我们在CMU PIE和耶鲁大学的人脸数据库上对该算法进行了测试。可以观察到显著的性能改进,特别是当要分类的个体数量增加时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信