E. G. Arsoy, M. Inac, A. Shafique, M. Ozcan, Y. Gurbuz
{"title":"The metal-insulator-metal diodes for infrared energy harvesting and detection applications","authors":"E. G. Arsoy, M. Inac, A. Shafique, M. Ozcan, Y. Gurbuz","doi":"10.1117/12.2224748","DOIUrl":null,"url":null,"abstract":"The metal-insulator-metal (MIM) diodes are considered to be very attractive candidate for infrared energy harvesting and detection applications. The high speed and compatibility with integrated circuits (IC’s) makes MIM diodes good choice for infrared (IR) regime of the electromagnetic spectrum. Moreover, it is possible to obtain large volume of devices in same unit area due to smaller active area required for MIM diodes. The aim of this work is to design and develop MIM diodes for energy harvesting and IR detection. For this work three different sets of materials; Au-Al2O3-Al, Au-Cr2O3-Cr, Au-TiO2-Ti Al2O3, are used for fabricating MIM diodes. Furthermore, the effect of the insulator thickness and diode active areas are investigated for Au-Al2O3-Al MIM diode to study diode characteristics further. The optimization of fabrication processes in physical vapor deposition (PVD) systems for the MIM diodes resulted in the devices having high non-linearity and responsivity. The non-linearity of 80 μA/V2 and a responsivity of 15 A/W are achieved for Al-Al2O3-Au MIM diodes under low applied bias of 50 mV. The responsivity of Au-Cr2O3-Cr and Au-TiO2-Ti diodes with insulating layers of Cr2O3 and TiO2 are found to be 8 A/W and 2 A/W respectively.","PeriodicalId":222501,"journal":{"name":"SPIE Defense + Security","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Defense + Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2224748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The metal-insulator-metal (MIM) diodes are considered to be very attractive candidate for infrared energy harvesting and detection applications. The high speed and compatibility with integrated circuits (IC’s) makes MIM diodes good choice for infrared (IR) regime of the electromagnetic spectrum. Moreover, it is possible to obtain large volume of devices in same unit area due to smaller active area required for MIM diodes. The aim of this work is to design and develop MIM diodes for energy harvesting and IR detection. For this work three different sets of materials; Au-Al2O3-Al, Au-Cr2O3-Cr, Au-TiO2-Ti Al2O3, are used for fabricating MIM diodes. Furthermore, the effect of the insulator thickness and diode active areas are investigated for Au-Al2O3-Al MIM diode to study diode characteristics further. The optimization of fabrication processes in physical vapor deposition (PVD) systems for the MIM diodes resulted in the devices having high non-linearity and responsivity. The non-linearity of 80 μA/V2 and a responsivity of 15 A/W are achieved for Al-Al2O3-Au MIM diodes under low applied bias of 50 mV. The responsivity of Au-Cr2O3-Cr and Au-TiO2-Ti diodes with insulating layers of Cr2O3 and TiO2 are found to be 8 A/W and 2 A/W respectively.