Vector quantization and clustering: a pyramid approach

D. Tamir, Chi-Yeon Park, Wook-Sung Yoo
{"title":"Vector quantization and clustering: a pyramid approach","authors":"D. Tamir, Chi-Yeon Park, Wook-Sung Yoo","doi":"10.1109/DCC.1995.515592","DOIUrl":null,"url":null,"abstract":"A multi-resolution K-means clustering method is presented. Starting with a low resolution sample of the input data the K-means algorithm is applied to a sequence of monotonically increasing-resolution samples of the given data. The cluster centers obtained from a low resolution stage are used as initial cluster centers for the next stage which is a higher resolution stage. The idea behind this method is that a good estimation of the initial location of the cluster centers can be obtained through K-means clustering of a sample of the input data. K-means clustering of the entire data with the initial cluster centers estimated by clustering a sample of the input data, reduces the convergence time of the algorithm.","PeriodicalId":107017,"journal":{"name":"Proceedings DCC '95 Data Compression Conference","volume":"229 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '95 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1995.515592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A multi-resolution K-means clustering method is presented. Starting with a low resolution sample of the input data the K-means algorithm is applied to a sequence of monotonically increasing-resolution samples of the given data. The cluster centers obtained from a low resolution stage are used as initial cluster centers for the next stage which is a higher resolution stage. The idea behind this method is that a good estimation of the initial location of the cluster centers can be obtained through K-means clustering of a sample of the input data. K-means clustering of the entire data with the initial cluster centers estimated by clustering a sample of the input data, reduces the convergence time of the algorithm.
向量量化和聚类:金字塔方法
提出了一种多分辨率k均值聚类方法。从输入数据的低分辨率样本开始,K-means算法应用于给定数据的单调递增分辨率样本序列。从低分辨率阶段获得的星团中心用作下一阶段即高分辨率阶段的初始星团中心。这种方法背后的思想是,通过对输入数据样本的K-means聚类,可以很好地估计聚类中心的初始位置。K-means对整个数据进行聚类,通过对输入数据的一个样本进行聚类估计初始聚类中心,从而减少了算法的收敛时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信