Temperature Modeling Study for High Precision Gyroscope Based on Neural Network

Qian Zhang, Xiao-fang Liu, J. Zhan, Gui-ming Chen
{"title":"Temperature Modeling Study for High Precision Gyroscope Based on Neural Network","authors":"Qian Zhang, Xiao-fang Liu, J. Zhan, Gui-ming Chen","doi":"10.1109/IUCE.2009.112","DOIUrl":null,"url":null,"abstract":"In the study, neural network theory was used to build a nonlinear model for high precision gyroscope reflecting the relationship between temperature and drift.The result shows that types of neural network and input sample have great influence on model precision. High precision gyroscope is sensitive to temperature. The input sample must take account of the continuous temperature and mean temperature value in a period of time can not be used for model. The model of multi-input and single-output is better than the model of single-input and single-output in the same neural network. Genetic algorithm(GA) can optimizes Back-Propagation(BP) neural network. GA-BP and BP neural network can’t achieve the precision request. Radial basis function(RBF) neural network has good precision whose relative error is about 10-6. RBF neural network can achieve model request.","PeriodicalId":153560,"journal":{"name":"2009 International Symposium on Intelligent Ubiquitous Computing and Education","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on Intelligent Ubiquitous Computing and Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IUCE.2009.112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the study, neural network theory was used to build a nonlinear model for high precision gyroscope reflecting the relationship between temperature and drift.The result shows that types of neural network and input sample have great influence on model precision. High precision gyroscope is sensitive to temperature. The input sample must take account of the continuous temperature and mean temperature value in a period of time can not be used for model. The model of multi-input and single-output is better than the model of single-input and single-output in the same neural network. Genetic algorithm(GA) can optimizes Back-Propagation(BP) neural network. GA-BP and BP neural network can’t achieve the precision request. Radial basis function(RBF) neural network has good precision whose relative error is about 10-6. RBF neural network can achieve model request.
基于神经网络的高精度陀螺仪温度建模研究
利用神经网络理论,建立了反映温度与漂移关系的高精度陀螺仪非线性模型。结果表明,神经网络类型和输入样本对模型精度有很大影响。高精度陀螺仪对温度敏感。输入样本必须考虑连续温度和一段时间内的平均温度值,不能用于建模。在同一神经网络中,多输入单输出模型优于单输入单输出模型。遗传算法(GA)可以对BP神经网络进行优化。GA-BP和BP神经网络无法达到精度要求。径向基函数(RBF)神经网络具有较好的精度,其相对误差约为10-6。RBF神经网络可以满足模型要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信