Evaluating the Underlying Components of High Frequency Financial Data: Finite Sample Performance and Microstructure Noise Effects

Rodrigo Hizmeri, M. Izzeldin
{"title":"Evaluating the Underlying Components of High Frequency Financial Data: Finite Sample Performance and Microstructure Noise Effects","authors":"Rodrigo Hizmeri, M. Izzeldin","doi":"10.2139/ssrn.3639110","DOIUrl":null,"url":null,"abstract":"This paper examines the finite sample properties of novel theoretical tests that evaluate the presence of: a) Brownian motion, b) jumps; c) finite vs. infinite activity jumps. In allowing for Gaussian, t-distributed, and Gaussian-T mixture noise, our Monte Carlo experiment guides a search for optimal performance across sampling frequencies. Using 100 stocks and SPY, we find that: i) a Brownian and a jump component characterize 1-min stock data; ii) Jumps should allow for both finite and infinite activity; iii) Rejection rates are time-varying, such that more jump days are usually associated with an increase of infinite jumps vis-a-vis finite jumps.","PeriodicalId":433005,"journal":{"name":"Econometrics: Data Collection & Data Estimation Methodology eJournal","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Data Collection & Data Estimation Methodology eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3639110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines the finite sample properties of novel theoretical tests that evaluate the presence of: a) Brownian motion, b) jumps; c) finite vs. infinite activity jumps. In allowing for Gaussian, t-distributed, and Gaussian-T mixture noise, our Monte Carlo experiment guides a search for optimal performance across sampling frequencies. Using 100 stocks and SPY, we find that: i) a Brownian and a jump component characterize 1-min stock data; ii) Jumps should allow for both finite and infinite activity; iii) Rejection rates are time-varying, such that more jump days are usually associated with an increase of infinite jumps vis-a-vis finite jumps.
评估高频金融数据的潜在成分:有限样本性能和微观结构噪声效应
本文研究了评价存在:a)布朗运动,b)跳跃的新理论检验的有限样本性质;C)有限与无限的活动跳跃。在允许高斯,t分布和高斯- t混合噪声的情况下,我们的蒙特卡罗实验指导在采样频率上搜索最佳性能。使用100只股票和SPY,我们发现:i)布朗分量和跳跃分量表征1分钟股票数据;ii)跳跃应该允许有限和无限的活动;iii)拒绝率是时变的,因此更多的跳跃天数通常与无限跳跃相对于有限跳跃的增加有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信