Drowsiness Detection using Instantaneous Frequency based Rhythms Separation for EEG Signals

S. Taran, V. Bajaj
{"title":"Drowsiness Detection using Instantaneous Frequency based Rhythms Separation for EEG Signals","authors":"S. Taran, V. Bajaj","doi":"10.1109/INFOCOMTECH.2018.8722429","DOIUrl":null,"url":null,"abstract":"Drowsiness is the major cause of road accidents because it reduces the conscious level of the drowsy driver. The road accidents can be avoided by automatic detection of drowsiness state. In this paper, the electroencephalogram (EEG) rhythms-based features are proposed for the identification of drowsiness state. The Hilbert Huang transform computed instantaneous frequency is used for separation of rhythms from the empirical mode decomposition (EMD) provided intrinsic mode functions (IMFs). The separated EEG rhythms are used for the computation of time domain features namely mean, average amplitude change, coefficient of variation, trimean, activity, complexity, and neg-entropy. These features are tested on the variants of ensemble classifier for the classification of drowsiness and alertness states. In ensemble classifier variants, the bagged tree ensemble classification model provides best classification results as compared to other same dataset methods.","PeriodicalId":175757,"journal":{"name":"2018 Conference on Information and Communication Technology (CICT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Conference on Information and Communication Technology (CICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMTECH.2018.8722429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Drowsiness is the major cause of road accidents because it reduces the conscious level of the drowsy driver. The road accidents can be avoided by automatic detection of drowsiness state. In this paper, the electroencephalogram (EEG) rhythms-based features are proposed for the identification of drowsiness state. The Hilbert Huang transform computed instantaneous frequency is used for separation of rhythms from the empirical mode decomposition (EMD) provided intrinsic mode functions (IMFs). The separated EEG rhythms are used for the computation of time domain features namely mean, average amplitude change, coefficient of variation, trimean, activity, complexity, and neg-entropy. These features are tested on the variants of ensemble classifier for the classification of drowsiness and alertness states. In ensemble classifier variants, the bagged tree ensemble classification model provides best classification results as compared to other same dataset methods.
基于瞬时频率节律分离的脑电信号睡意检测
困倦是交通事故的主要原因,因为它降低了困倦司机的意识水平。瞌睡状态自动检测可以避免交通事故。本文提出了一种基于脑电图节律特征的睡意状态识别方法。Hilbert Huang变换计算的瞬时频率用于从经验模态分解(EMD)中分离出提供固有模态函数(IMFs)的节奏。分离的脑电图节律用于计算时域特征,即平均、平均振幅变化、变异系数、三均值、活动性、复杂性和负熵。这些特征在集成分类器的变体上进行了测试,用于困倦和警觉状态的分类。在集成分类器变体中,与其他相同数据集方法相比,袋装树集成分类模型提供了最好的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信