Knowledge-embedded Prompt Learning for Zero-shot Social Media Text Classification

Jingyi Li, Qi Chen, Wen Wang, Fangyu Wu
{"title":"Knowledge-embedded Prompt Learning for Zero-shot Social Media Text Classification","authors":"Jingyi Li, Qi Chen, Wen Wang, Fangyu Wu","doi":"10.1109/SMARTCOMP58114.2023.00054","DOIUrl":null,"url":null,"abstract":"Social media plays an irreplaceable role in shaping the way information is created shared and consumed. While it provides access to a vast amount of data, extracting and analyzing useful insights from complex and dynamic social media data can be challenging. Deep learning models have shown promise in social media analysis tasks, but such models require a massive amount of labelled data which is usually unavailable in real-world settings. Additionally, these models lack common-sense knowledge which can limit their ability to generate comprehensive results. To address these challenges, we propose a knowledge-embedded prompt learning model for zero-shot social media text classification. Our experimental results on four social media datasets demonstrate that our proposed approach outperforms other well-known baselines.","PeriodicalId":163556,"journal":{"name":"2023 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP58114.2023.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Social media plays an irreplaceable role in shaping the way information is created shared and consumed. While it provides access to a vast amount of data, extracting and analyzing useful insights from complex and dynamic social media data can be challenging. Deep learning models have shown promise in social media analysis tasks, but such models require a massive amount of labelled data which is usually unavailable in real-world settings. Additionally, these models lack common-sense knowledge which can limit their ability to generate comprehensive results. To address these challenges, we propose a knowledge-embedded prompt learning model for zero-shot social media text classification. Our experimental results on four social media datasets demonstrate that our proposed approach outperforms other well-known baselines.
基于知识嵌入的社交媒体文本分类提示学习
社交媒体在塑造信息的创造、共享和消费方式方面发挥着不可替代的作用。虽然它提供了对大量数据的访问,但从复杂和动态的社交媒体数据中提取和分析有用的见解可能具有挑战性。深度学习模型在社交媒体分析任务中显示出了前景,但这种模型需要大量的标记数据,而这些数据在现实世界中通常是不可用的。此外,这些模型缺乏常识性知识,这限制了它们产生综合结果的能力。为了解决这些挑战,我们提出了一种知识嵌入式提示学习模型,用于零射击社交媒体文本分类。我们在四个社交媒体数据集上的实验结果表明,我们提出的方法优于其他众所周知的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信