Making Time Series Embeddings More Interpretable in Deep Learning - Extracting Higher-Level Features via Symbolic Approximation Representations

Leonid Schwenke, Martin Atzmueller
{"title":"Making Time Series Embeddings More Interpretable in Deep Learning - Extracting Higher-Level Features via Symbolic Approximation Representations","authors":"Leonid Schwenke, Martin Atzmueller","doi":"10.32473/flairs.36.133107","DOIUrl":null,"url":null,"abstract":"With the success of language models in deep learning, multiple new time series embeddings have been proposed. However, the interpretability of those representations is often still lacking compared to word embeddings. This paper tackles this issue, aiming to present some criteria for making time series embeddings applied in deep learning models more interpretable using higher-level features in symbolic form. For that, we investigate two different approaches for extracting symbolic approximation representations regarding the frequency and the trend information, i.e. the Symbolic Fourier Approximation (SFA) and the Symbolic Aggregate approXimation (SAX). In particular, we analyze and discuss the impact of applying the different representation approaches. Furthermore, in our experimentation, we apply a state-of-the-art Transformer model to demonstrate the efficacy of the proposed approach regarding explainability in a comprehensive evaluation using a large set of time series datasets.","PeriodicalId":302103,"journal":{"name":"The International FLAIRS Conference Proceedings","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International FLAIRS Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32473/flairs.36.133107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the success of language models in deep learning, multiple new time series embeddings have been proposed. However, the interpretability of those representations is often still lacking compared to word embeddings. This paper tackles this issue, aiming to present some criteria for making time series embeddings applied in deep learning models more interpretable using higher-level features in symbolic form. For that, we investigate two different approaches for extracting symbolic approximation representations regarding the frequency and the trend information, i.e. the Symbolic Fourier Approximation (SFA) and the Symbolic Aggregate approXimation (SAX). In particular, we analyze and discuss the impact of applying the different representation approaches. Furthermore, in our experimentation, we apply a state-of-the-art Transformer model to demonstrate the efficacy of the proposed approach regarding explainability in a comprehensive evaluation using a large set of time series datasets.
在深度学习中使时间序列嵌入更具可解释性——通过符号逼近表示提取高级特征
随着语言模型在深度学习中的成功,人们提出了多种新的时间序列嵌入方法。然而,与词嵌入相比,这些表示的可解释性往往仍然缺乏。本文解决了这个问题,旨在提出一些标准,使深度学习模型中应用的时间序列嵌入使用符号形式的高级特征更易于解释。为此,我们研究了两种不同的方法来提取关于频率和趋势信息的符号近似表示,即符号傅立叶近似(SFA)和符号聚合近似(SAX)。特别是,我们分析和讨论应用不同的表示方法的影响。此外,在我们的实验中,我们应用了最先进的Transformer模型来证明所提出的方法在使用大量时间序列数据集的综合评估中的可解释性的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信