Underdetermined source number estimation based on complex wishart distribution using nested arrays

Yu Rong, D. Bliss
{"title":"Underdetermined source number estimation based on complex wishart distribution using nested arrays","authors":"Yu Rong, D. Bliss","doi":"10.1109/MILCOM.2017.8170830","DOIUrl":null,"url":null,"abstract":"We propose a likelihood test for a covariance estimated from sample data which is used to determine the number of narrow band source signals. This Minimum Description Length (MDL) estimator is shown to be robust against deviations from the assumption of equal noise level across the array. A number of source Direction-Of-Arrivals (DOA) greater than the number of physical array elements is of interest. We propose a novel spatial smoothing algorithm which accurately estimates parameters for the covariance likelihood test. Improved parameter estimation performance is achieved when compared with the conventional spatial smoothing algorithm. Finally, the proposed source number estimator is validated through numerical results and compared with other recently developed approaches.","PeriodicalId":113767,"journal":{"name":"MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2017.8170830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a likelihood test for a covariance estimated from sample data which is used to determine the number of narrow band source signals. This Minimum Description Length (MDL) estimator is shown to be robust against deviations from the assumption of equal noise level across the array. A number of source Direction-Of-Arrivals (DOA) greater than the number of physical array elements is of interest. We propose a novel spatial smoothing algorithm which accurately estimates parameters for the covariance likelihood test. Improved parameter estimation performance is achieved when compared with the conventional spatial smoothing algorithm. Finally, the proposed source number estimator is validated through numerical results and compared with other recently developed approaches.
基于嵌套数组的复杂wishart分布的待定源数估计
我们提出了一个从样本数据估计协方差的似然检验,用于确定窄带源信号的数量。该最小描述长度(MDL)估计器对阵列上噪声水平相等的假设偏差具有鲁棒性。源到达方向(DOA)的数量大于物理阵列元素的数量是值得关注的。提出了一种新的空间平滑算法,可以准确估计协方差似然检验的参数。与传统的空间平滑算法相比,该算法的参数估计性能得到了提高。最后,通过数值结果验证了所提出的源数估计方法,并与最近发展的其他方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信