Towards Generating Consumer Labels for Machine Learning Models

C. Seifert, Stefanie Scherzinger, L. Wiese
{"title":"Towards Generating Consumer Labels for Machine Learning Models","authors":"C. Seifert, Stefanie Scherzinger, L. Wiese","doi":"10.1109/CogMI48466.2019.00033","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) based decision making is becoming commonplace. For persons affected by ML-based decisions, a certain level of transparency regarding the properties of the underlying ML model can be fundamental. In this vision paper, we propose to issue consumer labels for trained and published ML models. These labels primarily target machine learning lay persons, such as the operators of an ML system, the executors of decisions, and the decision subjects themselves. Provided that consumer labels comprehensively capture the characteristics of the trained ML model, consumers are enabled to recognize when human intelligence should supersede artificial intelligence. In the long run, we envision a service that generates these consumer labels (semi-)automatically. In this paper, we survey the requirements that an ML system should meet, and correspondingly, the properties that an ML consumer label could capture. We further discuss the feasibility of operationalizing and benchmarking these requirements in the automated generation of ML consumer labels.","PeriodicalId":116160,"journal":{"name":"2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CogMI48466.2019.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Machine learning (ML) based decision making is becoming commonplace. For persons affected by ML-based decisions, a certain level of transparency regarding the properties of the underlying ML model can be fundamental. In this vision paper, we propose to issue consumer labels for trained and published ML models. These labels primarily target machine learning lay persons, such as the operators of an ML system, the executors of decisions, and the decision subjects themselves. Provided that consumer labels comprehensively capture the characteristics of the trained ML model, consumers are enabled to recognize when human intelligence should supersede artificial intelligence. In the long run, we envision a service that generates these consumer labels (semi-)automatically. In this paper, we survey the requirements that an ML system should meet, and correspondingly, the properties that an ML consumer label could capture. We further discuss the feasibility of operationalizing and benchmarking these requirements in the automated generation of ML consumer labels.
为机器学习模型生成消费者标签
基于机器学习(ML)的决策正变得越来越普遍。对于受基于ML的决策影响的人来说,关于底层ML模型属性的一定程度的透明度可能是基本的。在这篇愿景论文中,我们建议为训练和发布的ML模型发布消费者标签。这些标签主要针对机器学习的非专业人员,例如机器学习系统的操作员、决策的执行者和决策主体本身。如果消费者标签全面捕获训练过的ML模型的特征,消费者就能够识别人类智能何时应该取代人工智能。从长远来看,我们设想有一种服务可以(半)自动地生成这些消费者标签。在本文中,我们调查了机器学习系统应该满足的需求,以及相应的,机器学习消费者标签可以捕获的属性。我们进一步讨论了在机器学习消费者标签的自动生成中实现这些要求的可行性和基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信