Prediction of chlorophyll-a and suspended solids through remote sensing and artificial neural networks

L. S. Kupssinskü, T. T. Guimarães, Rafael de Freitas, E. Souza, Pedro Rossa, A. M. Junior, M. Veronez, L. G. D. Silveira, C. Cazarin, F. F. Mauad
{"title":"Prediction of chlorophyll-a and suspended solids through remote sensing and artificial neural networks","authors":"L. S. Kupssinskü, T. T. Guimarães, Rafael de Freitas, E. Souza, Pedro Rossa, A. M. Junior, M. Veronez, L. G. D. Silveira, C. Cazarin, F. F. Mauad","doi":"10.1109/ICST46873.2019.9047682","DOIUrl":null,"url":null,"abstract":"Total suspended solids (TSS) and chlorophyll-a concentration are two critical parameters to monitor water quality. Since directly collecting samples for laboratory analysis can be expensive, the technique proposed in this paper takes another approach. TSS and chlorophyll-a are optically active components therefore enable measures through remote sensing. Using data from both Sentinel-2 spectral images and laboratory analysis, an artificial neural network was trained to predict the concentration of TSS and chlorophyll-a. The predictions were evaluated using the R2 coefficient, where TSS and chlorophyll-a achieved values of 0.7 and 0.72, respectively.","PeriodicalId":344937,"journal":{"name":"2019 13th International Conference on Sensing Technology (ICST)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 13th International Conference on Sensing Technology (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICST46873.2019.9047682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Total suspended solids (TSS) and chlorophyll-a concentration are two critical parameters to monitor water quality. Since directly collecting samples for laboratory analysis can be expensive, the technique proposed in this paper takes another approach. TSS and chlorophyll-a are optically active components therefore enable measures through remote sensing. Using data from both Sentinel-2 spectral images and laboratory analysis, an artificial neural network was trained to predict the concentration of TSS and chlorophyll-a. The predictions were evaluated using the R2 coefficient, where TSS and chlorophyll-a achieved values of 0.7 and 0.72, respectively.
基于遥感和人工神经网络的叶绿素-a和悬浮物预测
总悬浮物(TSS)和叶绿素-a浓度是监测水质的两个关键参数。由于直接收集样品进行实验室分析可能很昂贵,因此本文提出的技术采用了另一种方法。TSS和叶绿素-a是光学活性组分,因此可以通过遥感测量。利用Sentinel-2的光谱图像和实验室分析数据,训练人工神经网络来预测TSS和叶绿素-a的浓度。利用R2系数对预测结果进行评估,其中TSS和叶绿素-a分别达到0.7和0.72。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信