Improved model population analysis in near infrared spectroscopy

Hasan Ali Gamal Al-Kaf, A. Mohsen, Kim Seng Chia
{"title":"Improved model population analysis in near infrared spectroscopy","authors":"Hasan Ali Gamal Al-Kaf, A. Mohsen, Kim Seng Chia","doi":"10.1109/ICOICE48418.2019.9035177","DOIUrl":null,"url":null,"abstract":"Model population analysis has been widely used as an effective variable selection method in near infrared spectroscopic analysis. In this study, two model population analysis have been studied and improved i.e. bootstrapping soft shrinkage (BOSS) and interval variable iterative space shrinkage approach (iVISSA). The improved approach was (i) using the reproducible variables i.e. choosing the most consistent variables and applying iterative retained informative variables (IRIV), and (ii) using the uninformative variable elimination based on Monte Carlo (MC-UVE) for unstable variables. This study compares the proposed model with BOSS, iVISSA, and a hybrid model By using four different datasets. The results show that the proposed model outperformed BOSS, iVISSA, and VCPA-IRIV model in all the four datasets.","PeriodicalId":109414,"journal":{"name":"2019 First International Conference of Intelligent Computing and Engineering (ICOICE)","volume":"15 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 First International Conference of Intelligent Computing and Engineering (ICOICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOICE48418.2019.9035177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Model population analysis has been widely used as an effective variable selection method in near infrared spectroscopic analysis. In this study, two model population analysis have been studied and improved i.e. bootstrapping soft shrinkage (BOSS) and interval variable iterative space shrinkage approach (iVISSA). The improved approach was (i) using the reproducible variables i.e. choosing the most consistent variables and applying iterative retained informative variables (IRIV), and (ii) using the uninformative variable elimination based on Monte Carlo (MC-UVE) for unstable variables. This study compares the proposed model with BOSS, iVISSA, and a hybrid model By using four different datasets. The results show that the proposed model outperformed BOSS, iVISSA, and VCPA-IRIV model in all the four datasets.
改进的近红外光谱模型总体分析
模型总体分析作为一种有效的变量选择方法在近红外光谱分析中得到了广泛应用。本文研究并改进了自举软收缩法(bootstrapping soft shrinkmethod, BOSS)和区间变量迭代空间收缩法(interval variable iterative space shrinkmethod, iVISSA)两种模型种群分析方法。改进的方法是(i)使用可重复变量,即选择最一致的变量并应用迭代保留信息变量(IRIV); (ii)对不稳定变量使用基于蒙特卡罗的无信息变量消除(MC-UVE)。本研究通过使用四种不同的数据集,将所提出的模型与BOSS、iVISSA和混合模型进行比较。结果表明,该模型在所有四个数据集上都优于BOSS、iVISSA和VCPA-IRIV模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信