Exponential synchronization of stochastic complex dynamical networks with time-varying delay and impulsive effects

Linna Liu, F. Deng
{"title":"Exponential synchronization of stochastic complex dynamical networks with time-varying delay and impulsive effects","authors":"Linna Liu, F. Deng","doi":"10.1109/ICCA.2019.8899749","DOIUrl":null,"url":null,"abstract":"This paper investigates globally exponential synchronization of stochastic nonlinear dynamical networks with time-varying delay and impulsive effects. Based on a time-dependent Lyapanov function, a sufficient condition is established under which the stochastic nonlinear dynamical networks with time-varying delay and impulsive effects are mean square exponentially synchronized to a desired state. Above all, we generalize the work of [2] into the stochastic systems. Specifically, 1) we consider the stochastic disturbance in the network model; 2) the comparison principle and Schur complement Lemma are abandoned in the process of proofing exponential synchronization; 3) we come up with a new method to deal with the time delayauxiliary monotone function method rather than proof by contradiction.","PeriodicalId":130891,"journal":{"name":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","volume":"3527 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2019.8899749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates globally exponential synchronization of stochastic nonlinear dynamical networks with time-varying delay and impulsive effects. Based on a time-dependent Lyapanov function, a sufficient condition is established under which the stochastic nonlinear dynamical networks with time-varying delay and impulsive effects are mean square exponentially synchronized to a desired state. Above all, we generalize the work of [2] into the stochastic systems. Specifically, 1) we consider the stochastic disturbance in the network model; 2) the comparison principle and Schur complement Lemma are abandoned in the process of proofing exponential synchronization; 3) we come up with a new method to deal with the time delayauxiliary monotone function method rather than proof by contradiction.
具有时变时滞和脉冲效应的随机复杂动态网络的指数同步
研究了具有时变时滞和脉冲效应的随机非线性动态网络的全局指数同步问题。基于时变Lyapanov函数,建立了具有时变时滞和脉冲效应的随机非线性动态网络均方指数同步到期望状态的充分条件。首先,我们将[2]的工作推广到随机系统中。具体来说,1)我们考虑了网络模型中的随机干扰;2)在证明指数同步的过程中放弃了比较原理和Schur补引理;3)提出了一种新的处理时滞的方法——辅助单调函数法而不是反证法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信