Xin Jin, Daniel Agun, Tao Yang, Qinghao Wu, Yifan Shen, Susen Zhao
{"title":"Hybrid Indexing for Versioned Document Search with Cluster-based Retrieval","authors":"Xin Jin, Daniel Agun, Tao Yang, Qinghao Wu, Yifan Shen, Susen Zhao","doi":"10.1145/2983323.2983733","DOIUrl":null,"url":null,"abstract":"The previous two-phase method for searching versioned documents seeks a cost tradeoff by using non-positional information to rank document versions first. The second phase then re-ranks top document versions using positional information with fragment-based index compression. This paper proposes an alternative approach that uses cluster-based retrieval to quickly narrow the search scope guided by version representatives at Phase 1 and develops a hybrid index structure with adaptive runtime data traversal to speed up Phase 2 search. The hybrid scheme exploits the advantages of forward index and inverted index based on the term characteristics to minimize the time in extracting positional and other feature information during runtime search. This paper compares several indexing and data traversal options with different time and space tradeoffs and describes evaluation results to demonstrate their effectiveness. The experiment results show that the proposed scheme can be up-to about 4x as fast as the previous work on solid state drives while retaining good relevance.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
The previous two-phase method for searching versioned documents seeks a cost tradeoff by using non-positional information to rank document versions first. The second phase then re-ranks top document versions using positional information with fragment-based index compression. This paper proposes an alternative approach that uses cluster-based retrieval to quickly narrow the search scope guided by version representatives at Phase 1 and develops a hybrid index structure with adaptive runtime data traversal to speed up Phase 2 search. The hybrid scheme exploits the advantages of forward index and inverted index based on the term characteristics to minimize the time in extracting positional and other feature information during runtime search. This paper compares several indexing and data traversal options with different time and space tradeoffs and describes evaluation results to demonstrate their effectiveness. The experiment results show that the proposed scheme can be up-to about 4x as fast as the previous work on solid state drives while retaining good relevance.