On the Complexity of Problems on Tree-structured Graphs

H. Bodlaender, C. Groenland, Hugo Jacob, Marcin Pilipczuk, Michal Pilipczuk
{"title":"On the Complexity of Problems on Tree-structured Graphs","authors":"H. Bodlaender, C. Groenland, Hugo Jacob, Marcin Pilipczuk, Michal Pilipczuk","doi":"10.48550/arXiv.2206.11828","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new class of parameterized problems, which we call XALP: the class of all parameterized problems that can be solved in $f(k)n^{O(1)}$ time and $f(k)\\log n$ space on a non-deterministic Turing Machine with access to an auxiliary stack (with only top element lookup allowed). Various natural problems on `tree-structured graphs' are complete for this class: we show that List Coloring and All-or-Nothing Flow parameterized by treewidth are XALP-complete. Moreover, Independent Set and Dominating Set parameterized by treewidth divided by $\\log n$, and Max Cut parameterized by cliquewidth are also XALP-complete. Besides finding a `natural home' for these problems, we also pave the road for future reductions. We give a number of equivalent characterisations of the class XALP, e.g., XALP is the class of problems solvable by an Alternating Turing Machine whose runs have tree size at most $f(k)n^{O(1)}$ and use $f(k)\\log n$ space. Moreover, we introduce `tree-shaped' variants of Weighted CNF-Satisfiability and Multicolor Clique that are XALP-complete.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.11828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we introduce a new class of parameterized problems, which we call XALP: the class of all parameterized problems that can be solved in $f(k)n^{O(1)}$ time and $f(k)\log n$ space on a non-deterministic Turing Machine with access to an auxiliary stack (with only top element lookup allowed). Various natural problems on `tree-structured graphs' are complete for this class: we show that List Coloring and All-or-Nothing Flow parameterized by treewidth are XALP-complete. Moreover, Independent Set and Dominating Set parameterized by treewidth divided by $\log n$, and Max Cut parameterized by cliquewidth are also XALP-complete. Besides finding a `natural home' for these problems, we also pave the road for future reductions. We give a number of equivalent characterisations of the class XALP, e.g., XALP is the class of problems solvable by an Alternating Turing Machine whose runs have tree size at most $f(k)n^{O(1)}$ and use $f(k)\log n$ space. Moreover, we introduce `tree-shaped' variants of Weighted CNF-Satisfiability and Multicolor Clique that are XALP-complete.
关于树结构图问题的复杂性
在本文中,我们引入了一类新的参数化问题,我们称之为XALP:在非确定性图灵机上,可以在$f(k)n^{O(1)}$时间和$f(k)\log n$空间内解决的所有参数化问题的类,这些问题可以访问辅助堆栈(只允许顶部元素查找)。在“树结构图”上的各种自然问题都是完备的:我们证明了由树宽度参数化的列表着色和全或无流是xalp完备的。此外,用treewidth除以$\log n$参数化的独立集和支配集,以及用cliquewidth参数化的最大割也是xalp完备的。除了为这些问题找到一个“自然家园”之外,我们还为未来的减排铺平了道路。我们给出了XALP类的一些等价特征,例如,XALP是由交替图灵机可解的一类问题,其运行的树大小最多为$f(k)n^{O(1)}$,并且使用$f(k)\log n$空间。此外,我们还引入了xalp完全的加权cnf -可满足性和多色团的“树形”变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信