Introduction of the bootstrap resampling in the generalized mixture estimation

A. Bougarradh, S. M'hiri, F. Ghorbel
{"title":"Introduction of the bootstrap resampling in the generalized mixture estimation","authors":"A. Bougarradh, S. M'hiri, F. Ghorbel","doi":"10.1109/ICTTA.2008.4530086","DOIUrl":null,"url":null,"abstract":"In this paper, we propose to introduce the bootstrap resampling technique in the generalized mixture estimation. The generalized aspect comes from the use of the probability density function (pdf) estimation coming from the Pearson system. The bootstrap sample is constructed by randomly selecting a small representative set of pixels from the original image. The application of the Bootstrapped Generalized Mixture Expectation Maximization algorithm BGMEM led us to define a new empirical criterion of representativity of the sample. We give some simulation results for the determination of the empirical criterion. We validate our criterion by the application of the algorithm to the problem of unsupervised image classification.","PeriodicalId":330215,"journal":{"name":"2008 3rd International Conference on Information and Communication Technologies: From Theory to Applications","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 3rd International Conference on Information and Communication Technologies: From Theory to Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTTA.2008.4530086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose to introduce the bootstrap resampling technique in the generalized mixture estimation. The generalized aspect comes from the use of the probability density function (pdf) estimation coming from the Pearson system. The bootstrap sample is constructed by randomly selecting a small representative set of pixels from the original image. The application of the Bootstrapped Generalized Mixture Expectation Maximization algorithm BGMEM led us to define a new empirical criterion of representativity of the sample. We give some simulation results for the determination of the empirical criterion. We validate our criterion by the application of the algorithm to the problem of unsupervised image classification.
广义混合估计中自举重采样的介绍
本文提出在广义混合估计中引入自举重采样技术。广义方面来自于使用来自Pearson系统的概率密度函数(pdf)估计。通过从原始图像中随机选择一小组具有代表性的像素来构造自举样本。应用自举广义混合期望最大化算法(BGMEM),定义了一种新的样本代表性经验准则。我们给出了一些模拟结果来确定经验准则。我们通过将该算法应用于无监督图像分类问题来验证我们的准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信