Hui Kong, Xuchun Li, Jian-Gang Wang, E. Teoh, C. Kambhamettu
{"title":"Discriminant Low-dimensional Subspace Analysis for Face Recognition with Small Number of Training Samples","authors":"Hui Kong, Xuchun Li, Jian-Gang Wang, E. Teoh, C. Kambhamettu","doi":"10.5244/C.19.70","DOIUrl":null,"url":null,"abstract":"In this paper, a framework of Discriminant Low-dimensional Subspace Analysis (DLSA) method is proposed to deal with the Small Sample Size (SSS) problem in face recognition area. Firstly, it is rigorously proven that the null space of the total covariance matrix, S t , is useless for recognition. Therefore, a framework of Fisher discriminant analysis in a low-dimensional space is developed by projecting all the samples onto the range space of S t . Two algorithms are proposed in this framework, i.e., Unified Linear Discriminant Analysis (ULDA) and Modified Linear Discriminant Analysis (MLDA). The ULDA extracts discriminant information from three subspaces of this lowdimensional space. The MLDA adopts a modified Fisher criterion which can avoid the singularity problem in conventional LDA. Experimental results on a large combined database have demonstrated that the proposed ULDA and MLDA can both achieve better performance than the other state-of-the-art LDA-based algorithms in recognition accuracy.","PeriodicalId":196845,"journal":{"name":"Procedings of the British Machine Vision Conference 2005","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedings of the British Machine Vision Conference 2005","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5244/C.19.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
In this paper, a framework of Discriminant Low-dimensional Subspace Analysis (DLSA) method is proposed to deal with the Small Sample Size (SSS) problem in face recognition area. Firstly, it is rigorously proven that the null space of the total covariance matrix, S t , is useless for recognition. Therefore, a framework of Fisher discriminant analysis in a low-dimensional space is developed by projecting all the samples onto the range space of S t . Two algorithms are proposed in this framework, i.e., Unified Linear Discriminant Analysis (ULDA) and Modified Linear Discriminant Analysis (MLDA). The ULDA extracts discriminant information from three subspaces of this lowdimensional space. The MLDA adopts a modified Fisher criterion which can avoid the singularity problem in conventional LDA. Experimental results on a large combined database have demonstrated that the proposed ULDA and MLDA can both achieve better performance than the other state-of-the-art LDA-based algorithms in recognition accuracy.