Biometric Identification Based on EEG Signal with Photo Stimuli using Hjorth Descriptor

I. Wijayanto, S. Hadiyoso, Fauzia A. Sekarningrum
{"title":"Biometric Identification Based on EEG Signal with Photo Stimuli using Hjorth Descriptor","authors":"I. Wijayanto, S. Hadiyoso, Fauzia A. Sekarningrum","doi":"10.1109/ICoICT49345.2020.9166210","DOIUrl":null,"url":null,"abstract":"Biometric techniques are methods for recognizing a person based on physiological or behavioral characteristics. The advantage of biometric techniques is difficult to modify. Many recent studies have started to develop bio signal-based biometrics such as the biometric electroencephalogram (EEG). This study proposes a biometric identification system based on EEG signals with photo stimuli. The EEG data is collected from five participants with five recording sections by using the Muse Headband EEG Monitor. The EEG characterization of each individual is calculated using the Hjorth Descriptor method. Validation of the proposed system is done by using K-fold crossvalidation and Backpropagation neural network. A total of 25 validated data, consisting of 10 test data and 15 training data. The system achieves 100% accuracy.","PeriodicalId":113108,"journal":{"name":"2020 8th International Conference on Information and Communication Technology (ICoICT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Conference on Information and Communication Technology (ICoICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoICT49345.2020.9166210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Biometric techniques are methods for recognizing a person based on physiological or behavioral characteristics. The advantage of biometric techniques is difficult to modify. Many recent studies have started to develop bio signal-based biometrics such as the biometric electroencephalogram (EEG). This study proposes a biometric identification system based on EEG signals with photo stimuli. The EEG data is collected from five participants with five recording sections by using the Muse Headband EEG Monitor. The EEG characterization of each individual is calculated using the Hjorth Descriptor method. Validation of the proposed system is done by using K-fold crossvalidation and Backpropagation neural network. A total of 25 validated data, consisting of 10 test data and 15 training data. The system achieves 100% accuracy.
基于Hjorth描述符的光刺激脑电信号生物特征识别
生物识别技术是基于生理或行为特征来识别一个人的方法。生物识别技术的优点是难以修改。近年来,许多研究开始发展基于生物信号的生物识别技术,如生物脑电图(EEG)。本研究提出了一种基于脑电信号与光刺激的生物特征识别系统。使用Muse头带脑电图监测仪从5名参与者中收集5个记录部分的脑电图数据。使用Hjorth描述子方法计算每个个体的脑电图特征。采用K-fold交叉验证和反向传播神经网络对系统进行了验证。共有25个验证数据,包括10个测试数据和15个训练数据。系统准确率达到100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信