Decentralized direct I-term fuzzy-neural control of an anaerobic digestion bioprocess plant

I. Baruch, S. Hernandez
{"title":"Decentralized direct I-term fuzzy-neural control of an anaerobic digestion bioprocess plant","authors":"I. Baruch, S. Hernandez","doi":"10.1109/CICA.2011.5945753","DOIUrl":null,"url":null,"abstract":"The paper proposed to use recurrent Fuzzy-Neural Multi-Model (FNMM) identifier for decentralized identification of distributed parameter anaerobic wastewater treatment digestion bioprocess, carried out in fixed bed and recirculation tank. The distributed parameter analytical model of the digestion bioprocess is used as a plant data generator. It is reduced to a lumped system using the orthogonal collocation method, applied in four collocation points (plus one point of the recirculation tank), which are used as centres of the membership functions of the fuzzyfied plant output variables with respect to the space variable. The local and global weight parameters and states of the proposed FNMM identifier are learnt by the Levenberg-Marquardt learning algorithm and they are implemented by a Hierarchical Fuzzy-Neural Multi-Model Direct Controller with Integral Term. The graphical simulation results of the digestion system direct fuzzy-neural I-term learning control, exhibited a good convergence, and precise reference tracking.","PeriodicalId":420555,"journal":{"name":"Computational Intelligence in Control and Automation (CICA)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2011.5945753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The paper proposed to use recurrent Fuzzy-Neural Multi-Model (FNMM) identifier for decentralized identification of distributed parameter anaerobic wastewater treatment digestion bioprocess, carried out in fixed bed and recirculation tank. The distributed parameter analytical model of the digestion bioprocess is used as a plant data generator. It is reduced to a lumped system using the orthogonal collocation method, applied in four collocation points (plus one point of the recirculation tank), which are used as centres of the membership functions of the fuzzyfied plant output variables with respect to the space variable. The local and global weight parameters and states of the proposed FNMM identifier are learnt by the Levenberg-Marquardt learning algorithm and they are implemented by a Hierarchical Fuzzy-Neural Multi-Model Direct Controller with Integral Term. The graphical simulation results of the digestion system direct fuzzy-neural I-term learning control, exhibited a good convergence, and precise reference tracking.
厌氧消化生物工艺装置的分散直接i项模糊神经控制
本文提出了利用递归模糊神经多模型(FNMM)识别器对固定床和循环池中厌氧废水处理消化生物过程的分布式参数进行分散识别。利用消化生物过程的分布参数分析模型作为植物数据发生器。使用正交配置方法将其简化为集总系统,该方法应用于四个配置点(加上再循环罐的一个点),这些点用作模糊化的工厂输出变量相对于空间变量的隶属函数的中心。采用Levenberg-Marquardt学习算法学习FNMM辨识器的局部和全局权重参数和状态,并采用带积分项的层次模糊神经多模型直接控制器实现。仿真结果表明,消化系统具有良好的收敛性和精确的参考跟踪能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信