{"title":"Application with deep learning models for COVID-19 diagnosis","authors":"Fuat Türk, Yunus Kökver","doi":"10.35377/saucis...1085625","DOIUrl":null,"url":null,"abstract":"COVID-19 is a deadly virus that first appeared in late 2019 and spread rapidly around the world. Understanding and classifying computed tomography images (CT) is extremely important for the diagnosis of COVID-19. Many case classification studies face many problems, especially unbalanced and insufficient data. For this reason, deep learning methods have a great importance for the diagnosis of COVID-19. Therefore, we had the opportunity to study the architectures of NasNet-Mobile, DenseNet and Nasnet-Mobile+DenseNet with the dataset we have merged. \nThe dataset we have merged for COVID-19 is divided into 3 separate classes: Normal, COVID-19, and Pneumonia. We obtained the accuracy 87.16%, 93.38% and 93.72% for the NasNet-Mobile, DenseNet and NasNet-Mobile+DenseNet architectures for the classification, respectively. The results once again demonstrate the importance of Deep Learning methods for the diagnosis of COVID-19.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sakarya University Journal of Computer and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35377/saucis...1085625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
COVID-19 is a deadly virus that first appeared in late 2019 and spread rapidly around the world. Understanding and classifying computed tomography images (CT) is extremely important for the diagnosis of COVID-19. Many case classification studies face many problems, especially unbalanced and insufficient data. For this reason, deep learning methods have a great importance for the diagnosis of COVID-19. Therefore, we had the opportunity to study the architectures of NasNet-Mobile, DenseNet and Nasnet-Mobile+DenseNet with the dataset we have merged.
The dataset we have merged for COVID-19 is divided into 3 separate classes: Normal, COVID-19, and Pneumonia. We obtained the accuracy 87.16%, 93.38% and 93.72% for the NasNet-Mobile, DenseNet and NasNet-Mobile+DenseNet architectures for the classification, respectively. The results once again demonstrate the importance of Deep Learning methods for the diagnosis of COVID-19.