Application with deep learning models for COVID-19 diagnosis

Fuat Türk, Yunus Kökver
{"title":"Application with deep learning models for COVID-19 diagnosis","authors":"Fuat Türk, Yunus Kökver","doi":"10.35377/saucis...1085625","DOIUrl":null,"url":null,"abstract":"COVID-19 is a deadly virus that first appeared in late 2019 and spread rapidly around the world. Understanding and classifying computed tomography images (CT) is extremely important for the diagnosis of COVID-19. Many case classification studies face many problems, especially unbalanced and insufficient data. For this reason, deep learning methods have a great importance for the diagnosis of COVID-19. Therefore, we had the opportunity to study the architectures of NasNet-Mobile, DenseNet and Nasnet-Mobile+DenseNet with the dataset we have merged. \nThe dataset we have merged for COVID-19 is divided into 3 separate classes: Normal, COVID-19, and Pneumonia. We obtained the accuracy 87.16%, 93.38% and 93.72% for the NasNet-Mobile, DenseNet and NasNet-Mobile+DenseNet architectures for the classification, respectively. The results once again demonstrate the importance of Deep Learning methods for the diagnosis of COVID-19.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sakarya University Journal of Computer and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35377/saucis...1085625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

COVID-19 is a deadly virus that first appeared in late 2019 and spread rapidly around the world. Understanding and classifying computed tomography images (CT) is extremely important for the diagnosis of COVID-19. Many case classification studies face many problems, especially unbalanced and insufficient data. For this reason, deep learning methods have a great importance for the diagnosis of COVID-19. Therefore, we had the opportunity to study the architectures of NasNet-Mobile, DenseNet and Nasnet-Mobile+DenseNet with the dataset we have merged. The dataset we have merged for COVID-19 is divided into 3 separate classes: Normal, COVID-19, and Pneumonia. We obtained the accuracy 87.16%, 93.38% and 93.72% for the NasNet-Mobile, DenseNet and NasNet-Mobile+DenseNet architectures for the classification, respectively. The results once again demonstrate the importance of Deep Learning methods for the diagnosis of COVID-19.
深度学习模型在COVID-19诊断中的应用
COVID-19是一种致命的病毒,于2019年底首次出现,并在全球迅速传播。理解和分类计算机断层扫描图像(CT)对COVID-19的诊断至关重要。许多病例分类研究面临着许多问题,特别是数据不平衡和不充分。因此,深度学习方法对COVID-19的诊断具有重要意义。因此,我们有机会用我们合并的数据集研究NasNet-Mobile、DenseNet和NasNet-Mobile +DenseNet的架构。我们合并的COVID-19数据集分为3个不同的类别:正常、COVID-19和肺炎。结果表明,基于NasNet-Mobile、DenseNet和NasNet-Mobile+DenseNet的分类准确率分别为87.16%、93.38%和93.72%。结果再次证明了深度学习方法对COVID-19诊断的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信