Primal-Dual Interior-Point Methods

Stephen J. Wright
{"title":"Primal-Dual Interior-Point Methods","authors":"Stephen J. Wright","doi":"10.1137/1.9781611971453","DOIUrl":null,"url":null,"abstract":"Preface Notation 1. Introduction. Linear Programming Primal-Dual Methods The Central Path A Primal-Dual Framework Path-Following Methods Potential-Reduction Methods Infeasible Starting Points Superlinear Convergence Extensions Mehrotra's Predictor-Corrector Algorithm Linear Algebra Issues Karmarkar's Algorithm 2. Background. Linear Programming and Interior-Point Methods Standard Form Optimality Conditions, Duality, and Solution Sets The B {SYMBOL 200 \\f \"Symbol\"} N Partition and Strict Complementarity A Strictly Interior Point Rank of the Matrix A Bases and Vertices Farkas's Lemma and a Proof of the Goldman-Tucker Result The Central Path Background. Primal Method Primal-Dual Methods. Development of the Fundamental Ideas Notes and References 3. Complexity Theory. Polynomial Versus Exponential, Worst Case vs Average Case Storing the Problem Data. Dimension and Size The Turing Machine and Rational Arithmetic Primal-Dual Methods and Rational Arithmetic Linear Programming and Rational Numbers Moving to a Solution from an Interior Point Complexity of Simplex, Ellipsoid, and Interior-Point Methods Polynomial and Strongly Polynomial Algorithms Beyond the Turing Machine Model More on the Real-Number Model and Algebraic Complexity A General Complexity Theorem for Path-Following Methods Notes and References 4. Potential-Reduction Methods. A Primal-Dual Potential-Reduction Algorithm Reducing Forces Convergence A Quadratic Estimate of \\Phi _{\\rho } along a Feasible Direction Bounding the Coefficients in The Quadratic Approximation An Estimate of the Reduction in \\Phi _{\\rho } and Polynomial Complexity What About Centrality? Choosing {SYMBOL 114 \\f \"Symbol\"} and {SYMBOL 97 \\f \"Symbol\"} Notes and References 5. Path-Following Algorithms. The Short-Step Path-Following Algorithm Technical Results The Predictor-Corrector Method A Long-Step Path-Following Algorithm Limit Points of the Iteration Sequence Proof of Lemma 5.3 Notes and References 6. Infeasible-Interior-Point Algorithms. The Algorithm Convergence of Algorithm IPF Technical Results I. Bounds on \\nu _k \\delimiter \"026B30D (x^k,s^k) \\delimiter \"026B30D Technical Results II. Bounds on (D^k)^{-1} \\Delta x^k and D^k \\Delta s^k Technical Results III. A Uniform Lower Bound on {SYMBOL 97 \\f \"Symbol\"}k Proofs of Theorems 6.1 and 6.2 Limit Points of the Iteration Sequence 7. Superlinear Convergence and Finite Termination. Affine-Scaling Steps An Estimate of ({SYMBOL 68 \\f \"Symbol\"}x, {SYMBOL 68 \\f \"Symbol\"} s). The Feasible Case An Estimate of ({SYMBOL 68 \\f \"Symbol\"} x, {SYMBOL 68 \\f \"Symbol\"} s). The Infeasible Case Algorithm PC Is Superlinear Nearly Quadratic Methods Convergence of Algorithm LPF+ Convergence of the Iteration Sequence {SYMBOL 206 \\f \"Symbol\"}(A,b,c) and Finite Termination A Finite Termination Strategy Recovering an Optimal Basis More on {SYMBOL 206 \\f \"Symbol\"} (A,b,c) Notes and References 8. Extensions. The Monotone LCP Mixed and Horizontal LCP Strict Complementarity and LCP Convex QP Convex Programming Monotone Nonlinear Complementarity and Variational Inequalities Semidefinite Programming Proof of Theorem 8.4. Notes and References 9. Detecting Infeasibility. Self-Duality The Simplified HSD Form The HSDl Form Identifying a Solution-Free Region Implementations of the HSD Formulations Notes and References 10. Practical Aspects of Primal-Dual Algorithms. Motivation for Mehrotra's Algorithm The Algorithm Superquadratic Convergence Second-Order Trajectory-Following Methods Higher-Order Methods Further Enhancements Notes and References 11. Implementations. Three Forms of the Step Equation The Cholesky Factorization Sparse Cholesky Factorization. Minimum-Degree Orderings Other Orderings Small Pivots in the Cholesky Factorization Dense Columns in A The Augmented System Formulat","PeriodicalId":101611,"journal":{"name":"Other Titles in Applied Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2463","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Other Titles in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611971453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2463

Abstract

Preface Notation 1. Introduction. Linear Programming Primal-Dual Methods The Central Path A Primal-Dual Framework Path-Following Methods Potential-Reduction Methods Infeasible Starting Points Superlinear Convergence Extensions Mehrotra's Predictor-Corrector Algorithm Linear Algebra Issues Karmarkar's Algorithm 2. Background. Linear Programming and Interior-Point Methods Standard Form Optimality Conditions, Duality, and Solution Sets The B {SYMBOL 200 \f "Symbol"} N Partition and Strict Complementarity A Strictly Interior Point Rank of the Matrix A Bases and Vertices Farkas's Lemma and a Proof of the Goldman-Tucker Result The Central Path Background. Primal Method Primal-Dual Methods. Development of the Fundamental Ideas Notes and References 3. Complexity Theory. Polynomial Versus Exponential, Worst Case vs Average Case Storing the Problem Data. Dimension and Size The Turing Machine and Rational Arithmetic Primal-Dual Methods and Rational Arithmetic Linear Programming and Rational Numbers Moving to a Solution from an Interior Point Complexity of Simplex, Ellipsoid, and Interior-Point Methods Polynomial and Strongly Polynomial Algorithms Beyond the Turing Machine Model More on the Real-Number Model and Algebraic Complexity A General Complexity Theorem for Path-Following Methods Notes and References 4. Potential-Reduction Methods. A Primal-Dual Potential-Reduction Algorithm Reducing Forces Convergence A Quadratic Estimate of \Phi _{\rho } along a Feasible Direction Bounding the Coefficients in The Quadratic Approximation An Estimate of the Reduction in \Phi _{\rho } and Polynomial Complexity What About Centrality? Choosing {SYMBOL 114 \f "Symbol"} and {SYMBOL 97 \f "Symbol"} Notes and References 5. Path-Following Algorithms. The Short-Step Path-Following Algorithm Technical Results The Predictor-Corrector Method A Long-Step Path-Following Algorithm Limit Points of the Iteration Sequence Proof of Lemma 5.3 Notes and References 6. Infeasible-Interior-Point Algorithms. The Algorithm Convergence of Algorithm IPF Technical Results I. Bounds on \nu _k \delimiter "026B30D (x^k,s^k) \delimiter "026B30D Technical Results II. Bounds on (D^k)^{-1} \Delta x^k and D^k \Delta s^k Technical Results III. A Uniform Lower Bound on {SYMBOL 97 \f "Symbol"}k Proofs of Theorems 6.1 and 6.2 Limit Points of the Iteration Sequence 7. Superlinear Convergence and Finite Termination. Affine-Scaling Steps An Estimate of ({SYMBOL 68 \f "Symbol"}x, {SYMBOL 68 \f "Symbol"} s). The Feasible Case An Estimate of ({SYMBOL 68 \f "Symbol"} x, {SYMBOL 68 \f "Symbol"} s). The Infeasible Case Algorithm PC Is Superlinear Nearly Quadratic Methods Convergence of Algorithm LPF+ Convergence of the Iteration Sequence {SYMBOL 206 \f "Symbol"}(A,b,c) and Finite Termination A Finite Termination Strategy Recovering an Optimal Basis More on {SYMBOL 206 \f "Symbol"} (A,b,c) Notes and References 8. Extensions. The Monotone LCP Mixed and Horizontal LCP Strict Complementarity and LCP Convex QP Convex Programming Monotone Nonlinear Complementarity and Variational Inequalities Semidefinite Programming Proof of Theorem 8.4. Notes and References 9. Detecting Infeasibility. Self-Duality The Simplified HSD Form The HSDl Form Identifying a Solution-Free Region Implementations of the HSD Formulations Notes and References 10. Practical Aspects of Primal-Dual Algorithms. Motivation for Mehrotra's Algorithm The Algorithm Superquadratic Convergence Second-Order Trajectory-Following Methods Higher-Order Methods Further Enhancements Notes and References 11. Implementations. Three Forms of the Step Equation The Cholesky Factorization Sparse Cholesky Factorization. Minimum-Degree Orderings Other Orderings Small Pivots in the Cholesky Factorization Dense Columns in A The Augmented System Formulat
原始-对偶内点法
1.前言引言。线性规划原对偶方法中心路径原对偶框架路径跟踪方法势能约简方法不可行起始点超线性收敛扩展Mehrotra的预测校正算法线性代数问题Karmarkar算法背景。线性规划和内点方法标准形式最优性条件、对偶性和解集B {SYMBOL 200\f“SYMBOL”}N划分和严格互补A矩阵的严格内点秩A基和顶点Farkas引理和Goldman-Tucker结果的证明。原始方法原始对偶方法。基本思想的发展注释和参考文献3。复杂性理论。多项式与指数,最坏情况与平均情况存储问题数据。图灵机与有理数算术原对偶方法与有理数线性规划与有理数从单纯形、椭球和内点法的内点复杂度移动到解的多项式和强多项式算法图灵机模型之外的实数模型和代数复杂度更多关于路径跟踪方法的一般复杂性定理注释与参考文献电位还原法。原对偶势约简算法减少收敛力的\Phi _ {\rho的二次估计二次逼近中系数的边界}\Phi _ {\rho和多项式复杂度的降低的估计中心性呢?选择}符号114 {\f“符号”}和{符号97 \f“符号”路径跟踪算法。5.短步循径算法技术成果预测校正法长步循径算法迭代序列极限点的证明引理5.3注与参考文献不可行的内点算法。算法IPF技术成果的算法收敛性1 . }\nu _k的界\delimiter "026B30D (x^k,s^k) \delimiter "026B30D技术成果(D^k)^{-1}\Delta x^k和D^k \Delta s^k的界{符号97上的一致下界\f“符号”}k定理6.1和6.2迭代序列极限点的证明超线性收敛与有限终止。仿射缩放步骤的估计({SYMBOL 68 \f“SYMBOL”}x{, SYMBOL 68 \f“SYMBOL”}s)。可行情况的估计({SYMBOL 68 \f“SYMBOL”}x{,符号68 \f“符号”}s).不可行的情况算法PC是超线性近二次方法LPF算法的收敛性+迭代序列{的收敛性符号206 \f“符号”}(A,b,c)和有限终止一种有限终止策略恢复最优基更多关于{符号206 \f“符号”}(A,b,c)注释与参考文献扩展。单调LCP混合、水平LCP严格互补与LCP凸QP凸规划单调非线性互补与变分不等式半定规划定理证明8.4。注释和参考文献发现不可行性。自对偶简化HSD形式HSDl形式识别无解区域HSD公式的实现原对偶算法的实用方面。Mehrotra算法的动机算法超二次收敛二阶轨迹跟踪方法高阶方法进一步增强注释与参考文献实现。阶跃方程的三种形式choolesky分解增广系统公式中Cholesky分解密集列的最小度排序和其他排序
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信