Efficient Knowledge Graph Completion via Dual-Sampling Path Ranking Algorithm

Zhifan Huang, Jianfeng Li, Tao Luo
{"title":"Efficient Knowledge Graph Completion via Dual-Sampling Path Ranking Algorithm","authors":"Zhifan Huang, Jianfeng Li, Tao Luo","doi":"10.1145/3407703.3407724","DOIUrl":null,"url":null,"abstract":"We consider the problem of Knowledge Graph Completion (KGC) in a large-scale knowledge base containing incomplete knowledge. Path Ranking Algorithm (PRA) is a soft inference procedure based on path-constrained random walk, which has proven to be an effective method for knowledge graph completion. However, the high computational complexity of PRA limits its application, especially in large-scale knowledge graphs. In order to alleviate this problem, we propose a Dual-Sampling Path Ranking Algorithm (DSPRA). DSPRA adopts a two-layer sampling strategy and performs particle sampling at the relation layer and the node layer respectively. Experiments on 48 tasks extracted from the NELL dataset prove that DSPRA can further improve the computational efficiency of PRA, while not significantly affecting its inference accuracy.","PeriodicalId":284603,"journal":{"name":"Proceedings of the 2020 Artificial Intelligence and Complex Systems Conference","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 Artificial Intelligence and Complex Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3407703.3407724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of Knowledge Graph Completion (KGC) in a large-scale knowledge base containing incomplete knowledge. Path Ranking Algorithm (PRA) is a soft inference procedure based on path-constrained random walk, which has proven to be an effective method for knowledge graph completion. However, the high computational complexity of PRA limits its application, especially in large-scale knowledge graphs. In order to alleviate this problem, we propose a Dual-Sampling Path Ranking Algorithm (DSPRA). DSPRA adopts a two-layer sampling strategy and performs particle sampling at the relation layer and the node layer respectively. Experiments on 48 tasks extracted from the NELL dataset prove that DSPRA can further improve the computational efficiency of PRA, while not significantly affecting its inference accuracy.
基于双采样路径排序算法的知识图谱高效补全
研究了包含不完全知识的大规模知识库中的知识图谱补全问题。路径排序算法(Path Ranking Algorithm, PRA)是一种基于路径约束随机行走的软推理算法,已被证明是知识图补全的有效方法。然而,PRA的高计算复杂度限制了它的应用,特别是在大规模知识图中的应用。为了缓解这一问题,我们提出了一种双采样路径排序算法(DSPRA)。DSPRA采用两层采样策略,分别在关系层和节点层进行粒子采样。通过对NELL数据集提取的48个任务的实验证明,DSPRA可以进一步提高PRA的计算效率,同时不会显著影响其推理精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信