Machine Learning-Assisted Wireless PHY Key Generation with Reconfigurable Intelligent Surfaces

Long Jiao, Guohua Sun, Junqing Le, K. Zeng
{"title":"Machine Learning-Assisted Wireless PHY Key Generation with Reconfigurable Intelligent Surfaces","authors":"Long Jiao, Guohua Sun, Junqing Le, K. Zeng","doi":"10.1145/3468218.3469042","DOIUrl":null,"url":null,"abstract":"The key generation rate (KGR) performance of wireless physical layer (PHY) key generation can be limited by the quasi-static slow fading environment. In this work, we aim to exploit the radio environment reconfiguration ability enabled by reconfigurable intelligent surface (RIS) to improve KGR of PHY key generation. By rapidly changing the RIS configurations, the randomness or entropy rate of the wireless channel can be significantly increased, thus improving the KGR. To achieve high KGR while keeping low bit disagreement ratio (BDR), for the first time, we propose a machine learning (ML) based adaptive quantization level prediction scheme to decide an optimal quantization level based on channel state information (CSI). Simulation results show that with a prediction accuracy as high as 98.2%, the proposed ML-based prediction model tends to assign high quantization levels in the high SNR regime to reduce BDR, while adopting low quantization levels under low SNRs to maintain a low BDR.","PeriodicalId":318719,"journal":{"name":"Proceedings of the 3rd ACM Workshop on Wireless Security and Machine Learning","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd ACM Workshop on Wireless Security and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3468218.3469042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The key generation rate (KGR) performance of wireless physical layer (PHY) key generation can be limited by the quasi-static slow fading environment. In this work, we aim to exploit the radio environment reconfiguration ability enabled by reconfigurable intelligent surface (RIS) to improve KGR of PHY key generation. By rapidly changing the RIS configurations, the randomness or entropy rate of the wireless channel can be significantly increased, thus improving the KGR. To achieve high KGR while keeping low bit disagreement ratio (BDR), for the first time, we propose a machine learning (ML) based adaptive quantization level prediction scheme to decide an optimal quantization level based on channel state information (CSI). Simulation results show that with a prediction accuracy as high as 98.2%, the proposed ML-based prediction model tends to assign high quantization levels in the high SNR regime to reduce BDR, while adopting low quantization levels under low SNRs to maintain a low BDR.
具有可重构智能表面的机器学习辅助无线PHY密钥生成
无线物理层(PHY)密钥生成的密钥生成速率(KGR)性能会受到准静态慢衰落环境的限制。在这项工作中,我们的目标是利用可重构智能表面(RIS)实现的无线电环境重构能力来提高PHY密钥生成的KGR。通过快速改变RIS配置,可以显著提高无线信道的随机性或熵率,从而提高KGR。为了在保持低比特不一致率(BDR)的同时实现高KGR,我们首次提出了一种基于机器学习(ML)的自适应量化水平预测方案,该方案基于信道状态信息(CSI)来确定最优量化水平。仿真结果表明,基于ml的预测模型在高信噪比下倾向于采用高量化水平来降低BDR,在低信噪比下倾向于采用低量化水平来保持低BDR,预测精度高达98.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信