Spatio-temporal graphical models for extreme events

Han Yu, Liaofan Zhang, J. Dauwels
{"title":"Spatio-temporal graphical models for extreme events","authors":"Han Yu, Liaofan Zhang, J. Dauwels","doi":"10.1109/ISIT.2014.6875190","DOIUrl":null,"url":null,"abstract":"We propose a novel statistical model to describe spatio-temporal extreme events. The model can be used to estimate extreme-value temporal pattern such as seasonality and trend, and further to predict the distribution of extreme events in the future. The basic idea is to explore graphical models to capture the highly structured dependencies among extreme events measured in time and space. More explicitly, we first assume the single observation at each location and time point follows a Generalized Extreme Value (GEV) distribution. The spatio-temporal dependencies are further encoded via graphical models imposed on the GEV parameters. We develop efficient learning and inference algorithms for the resulting non-Gaussian graphical model. Results of both synthetic and real data demonstrate the effectiveness of the proposed approach.","PeriodicalId":127191,"journal":{"name":"2014 IEEE International Symposium on Information Theory","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2014.6875190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose a novel statistical model to describe spatio-temporal extreme events. The model can be used to estimate extreme-value temporal pattern such as seasonality and trend, and further to predict the distribution of extreme events in the future. The basic idea is to explore graphical models to capture the highly structured dependencies among extreme events measured in time and space. More explicitly, we first assume the single observation at each location and time point follows a Generalized Extreme Value (GEV) distribution. The spatio-temporal dependencies are further encoded via graphical models imposed on the GEV parameters. We develop efficient learning and inference algorithms for the resulting non-Gaussian graphical model. Results of both synthetic and real data demonstrate the effectiveness of the proposed approach.
极端事件的时空图形模型
我们提出了一个新的统计模型来描述时空极端事件。该模型可用于估计极端事件的季节性和趋势等极值时间格局,并进一步预测未来极端事件的分布。其基本思想是探索图形模型,以捕捉在时间和空间上测量的极端事件之间高度结构化的依赖关系。更明确地说,我们首先假设每个地点和时间点的单个观测值遵循广义极值(GEV)分布。时空依赖关系通过施加在GEV参数上的图形模型进一步编码。我们为得到的非高斯图形模型开发了高效的学习和推理算法。综合数据和实际数据的结果都证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信