An MRF model-based method for unsupervised textured image segmentation

H. Noda, M. N. Shirazi, E. Kawaguchi
{"title":"An MRF model-based method for unsupervised textured image segmentation","authors":"H. Noda, M. N. Shirazi, E. Kawaguchi","doi":"10.1109/ICPR.1996.546926","DOIUrl":null,"url":null,"abstract":"This paper proposes a Markov random field (MRF) model-based method for unsupervised segmentation of images consisting of multiple textures. This method uses a hierarchical MRF with two layers, the first layer representing an unobservable region image and the second layer representing multiple textures which cover each region. This method is an iterative method based on the framework of the expectation and maximization (EM) method. We make use of an approximation for the Baum function in the expectation step. This reduces the parameter estimation to the maximum likelihood (ML) estimation given the current estimate of the region image. An estimation of the region image (image segmentation) is carried out by a deterministic relaxation method proposed by us.","PeriodicalId":290297,"journal":{"name":"Proceedings of 13th International Conference on Pattern Recognition","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 13th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1996.546926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes a Markov random field (MRF) model-based method for unsupervised segmentation of images consisting of multiple textures. This method uses a hierarchical MRF with two layers, the first layer representing an unobservable region image and the second layer representing multiple textures which cover each region. This method is an iterative method based on the framework of the expectation and maximization (EM) method. We make use of an approximation for the Baum function in the expectation step. This reduces the parameter estimation to the maximum likelihood (ML) estimation given the current estimate of the region image. An estimation of the region image (image segmentation) is carried out by a deterministic relaxation method proposed by us.
一种基于MRF模型的无监督纹理图像分割方法
提出了一种基于马尔可夫随机场(MRF)模型的多纹理图像无监督分割方法。该方法使用两层的分层MRF,第一层表示不可观测区域图像,第二层表示覆盖每个区域的多个纹理。该方法是一种基于期望与最大化(EM)方法框架的迭代方法。我们在期望步骤中使用了Baum函数的近似。这将参数估计减少到给定当前区域图像估计的最大似然(ML)估计。利用我们提出的确定性松弛方法对区域图像进行估计(图像分割)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信