Application of cluster algorithms for batching of proposed software changes

U. Krohn, C. Boldyreff
{"title":"Application of cluster algorithms for batching of proposed software changes","authors":"U. Krohn, C. Boldyreff","doi":"10.1002/(SICI)1096-908X(199905/06)11:3%3C151::AID-SMR189%3E3.0.CO;2-G","DOIUrl":null,"url":null,"abstract":"This paper proposes the application of cluster algorithms for the identification of changes which may be batched together. The results of impact-analysis sessions are represented as binary data where each variable has two values indicating the presence or absence of an impact on a particular software component. These data are then used to produce a matrix containing the similarity or the dissimilarity of each pair of proposed changes which are to be clustered. There are many clustering techniques for binary data. Most of the empirical investigations indicate that average-linkage and centroid-method clustering may be most useful in practice. Both clustering methods produced similar results in an example application. Proposed software changes that impacted a large number of the same components were merged early into common clusters, showing the maintainer which changes may be batched together. Copyright  1999 John Wiley & Sons, Ltd.","PeriodicalId":383619,"journal":{"name":"J. Softw. Maintenance Res. Pract.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Softw. Maintenance Res. Pract.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/(SICI)1096-908X(199905/06)11:3%3C151::AID-SMR189%3E3.0.CO;2-G","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper proposes the application of cluster algorithms for the identification of changes which may be batched together. The results of impact-analysis sessions are represented as binary data where each variable has two values indicating the presence or absence of an impact on a particular software component. These data are then used to produce a matrix containing the similarity or the dissimilarity of each pair of proposed changes which are to be clustered. There are many clustering techniques for binary data. Most of the empirical investigations indicate that average-linkage and centroid-method clustering may be most useful in practice. Both clustering methods produced similar results in an example application. Proposed software changes that impacted a large number of the same components were merged early into common clusters, showing the maintainer which changes may be batched together. Copyright  1999 John Wiley & Sons, Ltd.
应用聚类算法对提出的软件变更进行批处理
本文提出了应用聚类算法来识别可能被批处理在一起的变化。影响分析会话的结果表示为二进制数据,其中每个变量都有两个值,表示对特定软件组件是否存在影响。然后,这些数据被用来产生一个矩阵,其中包含要聚类的每对拟议变化的相似性或不相似性。有许多针对二进制数据的聚类技术。大多数实证研究表明,平均链接法和质心法聚类在实践中可能是最有用的。在一个示例应用程序中,这两种聚类方法产生了类似的结果。影响大量相同组件的建议的软件更改被早期合并到公共集群中,向维护者显示哪些更改可以批处理在一起。版权所有1999约翰威利父子有限公司
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信