Multi-relational Algorithm for Mining Association Rules in Large Databases

C. R. Valêncio, Fernando Takeshi Oyama, Fernando Tochio Ichiba, Rogéria Cristiane Gratão de Souza
{"title":"Multi-relational Algorithm for Mining Association Rules in Large Databases","authors":"C. R. Valêncio, Fernando Takeshi Oyama, Fernando Tochio Ichiba, Rogéria Cristiane Gratão de Souza","doi":"10.1109/PDCAT.2011.56","DOIUrl":null,"url":null,"abstract":"Multi-relational data mining enables pattern mining from multiple tables. The existing multi-relational mining association rules algorithms are not able to process large volumes of data, because the amount of memory required exceeds the amount available. The proposed algorithm MR-Radix presents a framework that promotes the optimization of memory usage. It also uses the concept of partitioning to handle large volumes of data. The original contribution of this proposal is enable a superior performance when compared to other related algorithms and moreover successfully concludes the task of mining association rules in large databases, bypass the problem of available memory. One of the tests showed that the MR-Radix presents fourteen times less memory usage than the GFP-growth.","PeriodicalId":137617,"journal":{"name":"2011 12th International Conference on Parallel and Distributed Computing, Applications and Technologies","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 12th International Conference on Parallel and Distributed Computing, Applications and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT.2011.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Multi-relational data mining enables pattern mining from multiple tables. The existing multi-relational mining association rules algorithms are not able to process large volumes of data, because the amount of memory required exceeds the amount available. The proposed algorithm MR-Radix presents a framework that promotes the optimization of memory usage. It also uses the concept of partitioning to handle large volumes of data. The original contribution of this proposal is enable a superior performance when compared to other related algorithms and moreover successfully concludes the task of mining association rules in large databases, bypass the problem of available memory. One of the tests showed that the MR-Radix presents fourteen times less memory usage than the GFP-growth.
大型数据库中关联规则挖掘的多关系算法
多关系数据挖掘支持从多个表中进行模式挖掘。现有的多关系挖掘关联规则算法无法处理大量数据,因为所需的内存量超过了可用的内存量。提出的算法MR-Radix提供了一个促进内存使用优化的框架。它还使用分区的概念来处理大量数据。与其他相关算法相比,该方案的原始贡献在于具有优越的性能,并且成功地完成了在大型数据库中挖掘关联规则的任务,绕过了可用内存的问题。其中一个测试表明,MR-Radix的内存使用比gfp增长少14倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信