Efficient algorithm for projected clustering

Eric Ka Ka Ng, A. Fu
{"title":"Efficient algorithm for projected clustering","authors":"Eric Ka Ka Ng, A. Fu","doi":"10.1109/ICDE.2002.994727","DOIUrl":null,"url":null,"abstract":"With high-dimensional data, natural clusters are expected to exist in different subspaces. We propose the EPC (efficient projected clustering) algorithm to discover the sets of correlated dimensions and the location of the clusters. This algorithm is quite different from previous approaches and has the following advantages: (1) there is no requirement on the input regarding the number of natural clusters and the average cardinality of the subspaces; (2) it can handle clusters of irregular shapes; (3) it produces better clustering results compared to the best previous method; (4) it has high scalability. From experiments, it is several times faster than the previous method, while producing more accurate results.","PeriodicalId":191529,"journal":{"name":"Proceedings 18th International Conference on Data Engineering","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 18th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2002.994727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

With high-dimensional data, natural clusters are expected to exist in different subspaces. We propose the EPC (efficient projected clustering) algorithm to discover the sets of correlated dimensions and the location of the clusters. This algorithm is quite different from previous approaches and has the following advantages: (1) there is no requirement on the input regarding the number of natural clusters and the average cardinality of the subspaces; (2) it can handle clusters of irregular shapes; (3) it produces better clustering results compared to the best previous method; (4) it has high scalability. From experiments, it is several times faster than the previous method, while producing more accurate results.
高效的投影聚类算法
对于高维数据,期望自然聚类存在于不同的子空间中。我们提出了EPC(高效投影聚类)算法来发现相关维集和聚类的位置。该算法与以往的方法有很大的不同,具有以下优点:(1)对输入的自然聚类个数和子空间的平均基数没有要求;(2)能够处理不规则形状的簇;(3)与之前最优的聚类方法相比,聚类效果更好;(4)具有较高的可扩展性。实验结果表明,该方法的速度比以前的方法快几倍,同时得到的结果更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信