Image super-resolution reconstruction algorithm based on Bayesian theory

Wenbo Zheng, Fei Deng, Shaocong Mo, Xin Jin, Yili Qu, J. Zhou, Rui Zou, Jia Shuai, Zefeng Xie, Sijie Long, Chengfeng Zheng
{"title":"Image super-resolution reconstruction algorithm based on Bayesian theory","authors":"Wenbo Zheng, Fei Deng, Shaocong Mo, Xin Jin, Yili Qu, J. Zhou, Rui Zou, Jia Shuai, Zefeng Xie, Sijie Long, Chengfeng Zheng","doi":"10.1109/ICIEA.2018.8398025","DOIUrl":null,"url":null,"abstract":"The Bayesian theory provides a new solution to image super-resolution reconstruction. In view of the poor robustness to noise and motion estimation in the vast majority of superresolution reconstruction algorithms. In this paper, we propose an image super-resolution reconstruction algorithm based on Bayesian representation. In the proposed algorithm, uncharted super-resolution images, motion parameters and unknown model parameters are utilized for modeling in a hierarchical Bayesian framework. We adopt degenerate distribution to derive the estimation of analytic solutions and applied the solutions to the super-resolution reconstruction which also enables the proposed algorithm robust to noises. The experimental results show that the proposed image super-resolution reconstruction algorithm based on Bayesian representation can achieve higher (or similar) performance than the state of-the-art methods.","PeriodicalId":140420,"journal":{"name":"2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2018.8398025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The Bayesian theory provides a new solution to image super-resolution reconstruction. In view of the poor robustness to noise and motion estimation in the vast majority of superresolution reconstruction algorithms. In this paper, we propose an image super-resolution reconstruction algorithm based on Bayesian representation. In the proposed algorithm, uncharted super-resolution images, motion parameters and unknown model parameters are utilized for modeling in a hierarchical Bayesian framework. We adopt degenerate distribution to derive the estimation of analytic solutions and applied the solutions to the super-resolution reconstruction which also enables the proposed algorithm robust to noises. The experimental results show that the proposed image super-resolution reconstruction algorithm based on Bayesian representation can achieve higher (or similar) performance than the state of-the-art methods.
基于贝叶斯理论的图像超分辨率重建算法
贝叶斯理论为图像超分辨率重建提供了一种新的解决方案。针对绝大多数超分辨率重建算法对噪声和运动估计的鲁棒性较差的问题。本文提出了一种基于贝叶斯表示的图像超分辨率重建算法。在该算法中,利用未知的超分辨率图像、运动参数和未知的模型参数在层次贝叶斯框架中建模。我们采用退化分布来推导解析解的估计,并将解应用于超分辨率重建,使算法对噪声具有鲁棒性。实验结果表明,本文提出的基于贝叶斯表示的图像超分辨率重建算法可以达到比现有方法更高(或相近)的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信