Software Metrics for Green Parallel Computing of Big Data Systems

H. Gürbüz, B. Tekinerdogan
{"title":"Software Metrics for Green Parallel Computing of Big Data Systems","authors":"H. Gürbüz, B. Tekinerdogan","doi":"10.1109/BigDataCongress.2016.54","DOIUrl":null,"url":null,"abstract":"Big Data is typically organized around a distributed file system on top of which the parallel algorithms can be executed for realizing the Big Data analytics. In general, the parallel algorithms can be mapped in different alternative ways to the computing platform. Hereby each alternative will perform differently with respect to the environmentally relevant parameters such as energy and power consumption. Existing studies on deployment of parallel computing algorithms have mainly focused on addressing general computing metrics such as speedup with respect to serial computing and efficiency of the use of the computing nodes. In this paper, we report on the elicitation of green metrics for big data systems that are required when analyzing deployment alternatives. To this end we use the existing systematic literature reviews and identify, and discuss the important green computing metrics for big data systems.","PeriodicalId":407471,"journal":{"name":"2016 IEEE International Congress on Big Data (BigData Congress)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Congress on Big Data (BigData Congress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2016.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Big Data is typically organized around a distributed file system on top of which the parallel algorithms can be executed for realizing the Big Data analytics. In general, the parallel algorithms can be mapped in different alternative ways to the computing platform. Hereby each alternative will perform differently with respect to the environmentally relevant parameters such as energy and power consumption. Existing studies on deployment of parallel computing algorithms have mainly focused on addressing general computing metrics such as speedup with respect to serial computing and efficiency of the use of the computing nodes. In this paper, we report on the elicitation of green metrics for big data systems that are required when analyzing deployment alternatives. To this end we use the existing systematic literature reviews and identify, and discuss the important green computing metrics for big data systems.
大数据系统绿色并行计算的软件度量
大数据通常是围绕分布式文件系统组织的,在分布式文件系统之上可以执行并行算法来实现大数据分析。通常,并行算法可以以不同的替代方式映射到计算平台。因此,每个替代方案将执行不同的环境相关参数,如能源和电力消耗。现有关于并行计算算法部署的研究主要集中在解决一般计算指标,如相对于串行计算的加速和计算节点的使用效率。在本文中,我们报告了在分析部署备选方案时所需的大数据系统绿色指标的启发。为此,我们利用现有的系统文献综述和识别,并讨论了大数据系统的重要绿色计算指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信