{"title":"A Real-time RFID Positioning System Using Tunneling Tags","authors":"Cheng Qi, F. Amato, G. Durgin","doi":"10.1109/RFID52461.2021.9444327","DOIUrl":null,"url":null,"abstract":"This paper proposes a new type of real-time decimeter-level radio-frequency identification (RFID) positioning system at 5.8 GHz. The system uses received signal phase (RSP)-based positioning techniques and tunneling tags (TTs). TTs amplify the signal strength of their backscattered signals while preserving the phases allowing for ultra-precise position estimates at long distances. A proof-of-concept RSP-based real-time frequency hopping reader is implemented on Software-Defined Radio (SDR) and Universal Software Radio Peripheral (USRP) platform. Experimental results show an average one-dimensional and two-dimensional positioning accuracy of 11 cm and 17 cm, respectively, in outdoor environments.","PeriodicalId":358808,"journal":{"name":"2021 IEEE International Conference on RFID (RFID)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on RFID (RFID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFID52461.2021.9444327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a new type of real-time decimeter-level radio-frequency identification (RFID) positioning system at 5.8 GHz. The system uses received signal phase (RSP)-based positioning techniques and tunneling tags (TTs). TTs amplify the signal strength of their backscattered signals while preserving the phases allowing for ultra-precise position estimates at long distances. A proof-of-concept RSP-based real-time frequency hopping reader is implemented on Software-Defined Radio (SDR) and Universal Software Radio Peripheral (USRP) platform. Experimental results show an average one-dimensional and two-dimensional positioning accuracy of 11 cm and 17 cm, respectively, in outdoor environments.