Predictive Maintenance Framework: Implementation of Local and Cloud Processing for Multi-stage Prediction of CNC Machines' Health

P. Aivaliotis, K. Georgoulias, R. Ricatto, M. Surico
{"title":"Predictive Maintenance Framework: Implementation of Local and Cloud Processing for Multi-stage Prediction of CNC Machines' Health","authors":"P. Aivaliotis, K. Georgoulias, R. Ricatto, M. Surico","doi":"10.1002/9781119564034.CH31","DOIUrl":null,"url":null,"abstract":"1.1. Abstract This paper presents a predictive maintenance framework for CNC machines focusing on a multi-stage prediction of machines’ health status. For the implementation of such a multi-stage prediction, the proposed approach includes two prediction layers: the cloud prediction layer and the local prediction layer. Each layer provides a prediction of machine health status in different timescale. The local prediction layer, based on data analysis techniques, is responsible to predict the health status of the machine for a short time period. Thus, this prediction can be used as an alarm aiming to prevent un-expected breakdowns. The cloud prediction layer, based on digital physical-based models, is responsible to provide a more general overview of machine health status using Prognostics and Health Management (PHM) techniques, useful for long timespan strategies definition. This paper presents the proposed approach and its benefits are described and discussed. The proposed approach will be implemented in the PROGRAMS project.","PeriodicalId":423825,"journal":{"name":"Enterprise Interoperability","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enterprise Interoperability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119564034.CH31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

1.1. Abstract This paper presents a predictive maintenance framework for CNC machines focusing on a multi-stage prediction of machines’ health status. For the implementation of such a multi-stage prediction, the proposed approach includes two prediction layers: the cloud prediction layer and the local prediction layer. Each layer provides a prediction of machine health status in different timescale. The local prediction layer, based on data analysis techniques, is responsible to predict the health status of the machine for a short time period. Thus, this prediction can be used as an alarm aiming to prevent un-expected breakdowns. The cloud prediction layer, based on digital physical-based models, is responsible to provide a more general overview of machine health status using Prognostics and Health Management (PHM) techniques, useful for long timespan strategies definition. This paper presents the proposed approach and its benefits are described and discussed. The proposed approach will be implemented in the PROGRAMS project.
预测性维护框架:用于数控机床健康多阶段预测的本地和云处理的实现
1.1. 摘要提出了一种数控机床的预测维护框架,重点是对机床健康状态进行多阶段预测。为了实现这种多阶段预测,提出的方法包括两个预测层:云预测层和局部预测层。每一层提供不同时间尺度下机器健康状态的预测。局部预测层基于数据分析技术,负责预测机器短时间内的健康状态。因此,这个预测可以作为一个警报,旨在防止意外的故障。云预测层基于基于数字物理的模型,负责使用预测和健康管理(PHM)技术提供机器健康状态的更全面概述,这对于长期战略定义非常有用。本文介绍了该方法,并对其优点进行了描述和讨论。拟议的方法将在PROGRAMS项目中实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信