Learning Drifting User Interest Incrementally from Numerically Labeled Feedbacks

Pingan Zhang, Juhua Pu, Yongli Liu, Z. Xiong
{"title":"Learning Drifting User Interest Incrementally from Numerically Labeled Feedbacks","authors":"Pingan Zhang, Juhua Pu, Yongli Liu, Z. Xiong","doi":"10.1109/FITME.2008.94","DOIUrl":null,"url":null,"abstract":"Incremental approaches learn drifting user interests mainly from user feedbacks. Most of those existing approaches assume that data instances in user feedbacks are binary labeled. This paper presents a novel incremental learning approach that learns drifting user interests from numerically labeled feedbacks instead of binary labeled ones. The approach models user interests as a set of probabilistic concepts, considers numerical instance labels as probabilities that the user likes those instances, and uses feedbacks to update user interest models incrementally. Experimental results on different learning tasks show that the approach outperforms existing approaches in numerically labeled feedback environment.","PeriodicalId":218182,"journal":{"name":"2008 International Seminar on Future Information Technology and Management Engineering","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Seminar on Future Information Technology and Management Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FITME.2008.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Incremental approaches learn drifting user interests mainly from user feedbacks. Most of those existing approaches assume that data instances in user feedbacks are binary labeled. This paper presents a novel incremental learning approach that learns drifting user interests from numerically labeled feedbacks instead of binary labeled ones. The approach models user interests as a set of probabilistic concepts, considers numerical instance labels as probabilities that the user likes those instances, and uses feedbacks to update user interest models incrementally. Experimental results on different learning tasks show that the approach outperforms existing approaches in numerically labeled feedback environment.
从数字标记的反馈中逐渐学习漂移的用户兴趣
增量方法主要从用户反馈中学习用户兴趣的漂移。大多数现有的方法都假设用户反馈中的数据实例是二元标记的。本文提出了一种新的增量学习方法,该方法从数字标记的反馈中学习用户兴趣的漂移,而不是从二进制标记的反馈中学习。该方法将用户兴趣建模为一组概率概念,将数值实例标签视为用户喜欢这些实例的概率,并使用反馈来逐步更新用户兴趣模型。不同学习任务的实验结果表明,该方法在数字标记反馈环境下优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信