Fisheye lens-based surveillance camera for wide field-of-view monitoring

Hyungtae Kim, Eunjung Chae, Gwanghyun Jo, J. Paik
{"title":"Fisheye lens-based surveillance camera for wide field-of-view monitoring","authors":"Hyungtae Kim, Eunjung Chae, Gwanghyun Jo, J. Paik","doi":"10.1109/ICCE.2015.7066501","DOIUrl":null,"url":null,"abstract":"This paper presents a single fisheye lens camera-based visual surveillance system for monitoring a wide area. A fisheye lens has a wider field-of-view (FOV) than normal lenses at the cost of a barrel distortion in the acquired image. After correcting the barrel distortion, the proposed algorithm detects objects, and performs tracking using a histogram-based Gaussian mixture model (GMM). Experimental results show that the proposed algorithm can efficiently detect objects by reducing the geometric distortion of the input image. For this reason it is suitable for not only surveillance cameras but also consumer applications of video object detection and recognition.","PeriodicalId":169402,"journal":{"name":"2015 IEEE International Conference on Consumer Electronics (ICCE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE.2015.7066501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

This paper presents a single fisheye lens camera-based visual surveillance system for monitoring a wide area. A fisheye lens has a wider field-of-view (FOV) than normal lenses at the cost of a barrel distortion in the acquired image. After correcting the barrel distortion, the proposed algorithm detects objects, and performs tracking using a histogram-based Gaussian mixture model (GMM). Experimental results show that the proposed algorithm can efficiently detect objects by reducing the geometric distortion of the input image. For this reason it is suitable for not only surveillance cameras but also consumer applications of video object detection and recognition.
基于鱼眼镜头的监控摄像头,用于大视场监控
本文提出了一种基于单鱼眼镜头摄像机的广域监控系统。鱼眼镜头具有比普通镜头更宽的视场(FOV),但代价是在获得的图像中产生桶形失真。在修正桶形失真后,该算法检测目标,并使用基于直方图的高斯混合模型(GMM)进行跟踪。实验结果表明,该算法通过减小输入图像的几何畸变,可以有效地检测出目标。因此,它不仅适用于监控摄像机,也适用于视频对象检测和识别的消费类应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信