{"title":"#nowplaying the future billboard: mining music listening behaviors of twitter users for hit song prediction","authors":"Yekyung Kim, B. Suh, Kyogu Lee","doi":"10.1145/2632188.2632206","DOIUrl":null,"url":null,"abstract":"Microblogs are rich sources of information because they provide platforms for users to share their thoughts, news, information, activities, and so on. Twitter is one of the most popular microblogs. Twitter users often use hashtags to mark specific topics and to link them with related tweets. In this study, we investigate the relationship between the music listening behaviors of Twitter users and a popular music ranking service by comparing information extracted from tweets with music-related hashtags and the Billboard chart. We collect users' music listening behavior from Twitter using music-related hashtags (e.g., #nowplaying). We then build a predictive model to forecast the Billboard rankings and hit music. The results show that the numbers of daily tweets about a specific song and artist can be effectively used to predict Billboard rankings and hits. This research suggests that users' music listening behavior on Twitter is highly correlated with general music trends and could play an important role in understanding consumers' music consumption patterns. In addition, we believe that Twitter users' music listening behavior can be applied in the field of Music Information Retrieval (MIR).","PeriodicalId":178656,"journal":{"name":"Proceedings of the first international workshop on Social media retrieval and analysis","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the first international workshop on Social media retrieval and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2632188.2632206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
Microblogs are rich sources of information because they provide platforms for users to share their thoughts, news, information, activities, and so on. Twitter is one of the most popular microblogs. Twitter users often use hashtags to mark specific topics and to link them with related tweets. In this study, we investigate the relationship between the music listening behaviors of Twitter users and a popular music ranking service by comparing information extracted from tweets with music-related hashtags and the Billboard chart. We collect users' music listening behavior from Twitter using music-related hashtags (e.g., #nowplaying). We then build a predictive model to forecast the Billboard rankings and hit music. The results show that the numbers of daily tweets about a specific song and artist can be effectively used to predict Billboard rankings and hits. This research suggests that users' music listening behavior on Twitter is highly correlated with general music trends and could play an important role in understanding consumers' music consumption patterns. In addition, we believe that Twitter users' music listening behavior can be applied in the field of Music Information Retrieval (MIR).