#nowplaying the future billboard: mining music listening behaviors of twitter users for hit song prediction

Yekyung Kim, B. Suh, Kyogu Lee
{"title":"#nowplaying the future billboard: mining music listening behaviors of twitter users for hit song prediction","authors":"Yekyung Kim, B. Suh, Kyogu Lee","doi":"10.1145/2632188.2632206","DOIUrl":null,"url":null,"abstract":"Microblogs are rich sources of information because they provide platforms for users to share their thoughts, news, information, activities, and so on. Twitter is one of the most popular microblogs. Twitter users often use hashtags to mark specific topics and to link them with related tweets. In this study, we investigate the relationship between the music listening behaviors of Twitter users and a popular music ranking service by comparing information extracted from tweets with music-related hashtags and the Billboard chart. We collect users' music listening behavior from Twitter using music-related hashtags (e.g., #nowplaying). We then build a predictive model to forecast the Billboard rankings and hit music. The results show that the numbers of daily tweets about a specific song and artist can be effectively used to predict Billboard rankings and hits. This research suggests that users' music listening behavior on Twitter is highly correlated with general music trends and could play an important role in understanding consumers' music consumption patterns. In addition, we believe that Twitter users' music listening behavior can be applied in the field of Music Information Retrieval (MIR).","PeriodicalId":178656,"journal":{"name":"Proceedings of the first international workshop on Social media retrieval and analysis","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the first international workshop on Social media retrieval and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2632188.2632206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

Microblogs are rich sources of information because they provide platforms for users to share their thoughts, news, information, activities, and so on. Twitter is one of the most popular microblogs. Twitter users often use hashtags to mark specific topics and to link them with related tweets. In this study, we investigate the relationship between the music listening behaviors of Twitter users and a popular music ranking service by comparing information extracted from tweets with music-related hashtags and the Billboard chart. We collect users' music listening behavior from Twitter using music-related hashtags (e.g., #nowplaying). We then build a predictive model to forecast the Billboard rankings and hit music. The results show that the numbers of daily tweets about a specific song and artist can be effectively used to predict Billboard rankings and hits. This research suggests that users' music listening behavior on Twitter is highly correlated with general music trends and could play an important role in understanding consumers' music consumption patterns. In addition, we believe that Twitter users' music listening behavior can be applied in the field of Music Information Retrieval (MIR).
#现在播放未来广告牌:挖掘twitter用户的音乐聆听行为,以预测热门歌曲
微博是丰富的信息来源,因为它为用户提供了分享思想、新闻、信息、活动等的平台。Twitter是最受欢迎的微博之一。Twitter用户经常使用标签来标记特定的主题,并将它们与相关的推文链接起来。在这项研究中,我们通过比较从带有音乐相关标签的推文中提取的信息和公告牌排行榜,来研究Twitter用户的音乐聆听行为与流行音乐排名服务之间的关系。我们使用与音乐相关的标签(例如#nowplaying)从Twitter上收集用户的音乐收听行为。然后我们建立一个预测模型来预测公告牌排名和热门音乐。结果表明,关于特定歌曲和歌手的每日推文数量可以有效地用于预测公告牌排名和点击量。该研究表明,用户在Twitter上的音乐收听行为与一般音乐趋势高度相关,可以在了解消费者的音乐消费模式方面发挥重要作用。此外,我们认为Twitter用户的音乐聆听行为可以应用于音乐信息检索(MIR)领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信