Visual state estimation of traffic lights using hidden Markov models

Dennis Nienhüser, M. Drescher, Johann Marius Zöllner
{"title":"Visual state estimation of traffic lights using hidden Markov models","authors":"Dennis Nienhüser, M. Drescher, Johann Marius Zöllner","doi":"10.1109/ITSC.2010.5625241","DOIUrl":null,"url":null,"abstract":"The comprehension of dynamic objects in the environment is a major concern of prospective assistance systems. Among the relevant dynamic objects are not only road users, but also parts of the traffic infrastructure: Traffic lights switch between different light colors to manage traffic at intersections. We propose a camera-based approach to incorporate the visual information of traffic lights. Assistance systems can use it to realize comfort, fuel economy and safety functions. We focus on the classification and state estimation using support vector machines and hidden Markov models. Our system is able to distinguish different types of traffic lights - even blinking lights - in real-time.","PeriodicalId":176645,"journal":{"name":"13th International IEEE Conference on Intelligent Transportation Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th International IEEE Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2010.5625241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

The comprehension of dynamic objects in the environment is a major concern of prospective assistance systems. Among the relevant dynamic objects are not only road users, but also parts of the traffic infrastructure: Traffic lights switch between different light colors to manage traffic at intersections. We propose a camera-based approach to incorporate the visual information of traffic lights. Assistance systems can use it to realize comfort, fuel economy and safety functions. We focus on the classification and state estimation using support vector machines and hidden Markov models. Our system is able to distinguish different types of traffic lights - even blinking lights - in real-time.
基于隐马尔可夫模型的交通灯视觉状态估计
对环境中动态物体的理解是未来辅助系统的主要关注点。在相关的动态对象中,不仅有道路使用者,还有部分交通基础设施:交通灯在不同的光色之间切换,以管理十字路口的交通。我们提出了一种基于摄像头的方法来整合交通信号灯的视觉信息。辅助系统可以利用它来实现舒适性、燃油经济性和安全性等功能。我们重点研究了使用支持向量机和隐马尔可夫模型的分类和状态估计。我们的系统能够实时区分不同类型的交通灯,甚至是闪烁的交通灯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信