A Token Classification Approach to Dependency Parsing

R. Milidiú, C. M. P. Crestana, C. D. Santos
{"title":"A Token Classification Approach to Dependency Parsing","authors":"R. Milidiú, C. M. P. Crestana, C. D. Santos","doi":"10.1109/STIL.2009.29","DOIUrl":null,"url":null,"abstract":"The Dependency-based syntactic parsing task consists in identifying a head word for each word in an input sentence. Hence, its output is a rooted tree where the nodes are the words in the sentence. State-of-the-art dependency parsing systems use transition-based or graph-based models. We present a token classification approach to dependency parsing, where any classification algorithm can be used. To evaluate its effectiveness, we apply the Entropy GuidedTransformation Learning algorithm to the CoNLL 2006 corpus, using the Unlabelled Attachment Score as the accuracy metric. Our results show that the generated models are close to the average CoNLL system performance. Additionally,these findings also indicate that the token classification approach is a promising one.","PeriodicalId":265848,"journal":{"name":"2009 Seventh Brazilian Symposium in Information and Human Language Technology","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh Brazilian Symposium in Information and Human Language Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STIL.2009.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The Dependency-based syntactic parsing task consists in identifying a head word for each word in an input sentence. Hence, its output is a rooted tree where the nodes are the words in the sentence. State-of-the-art dependency parsing systems use transition-based or graph-based models. We present a token classification approach to dependency parsing, where any classification algorithm can be used. To evaluate its effectiveness, we apply the Entropy GuidedTransformation Learning algorithm to the CoNLL 2006 corpus, using the Unlabelled Attachment Score as the accuracy metric. Our results show that the generated models are close to the average CoNLL system performance. Additionally,these findings also indicate that the token classification approach is a promising one.
依赖解析的令牌分类方法
基于依赖性的句法解析任务包括识别输入句子中每个单词的首词。因此,它的输出是一个有根的树,其中节点是句子中的单词。最先进的依赖解析系统使用基于转换或基于图的模型。我们提出了一种用于依赖解析的标记分类方法,其中可以使用任何分类算法。为了评估其有效性,我们将熵引导转换学习算法应用于CoNLL 2006语料库,使用未标记附件分数作为准确性度量。结果表明,所生成的模型接近于控制控制系统的平均性能。此外,这些发现还表明令牌分类方法是一种很有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信