Truss topology optimization with species conserving genetic algorithm

Jian-Ping Li, F. Campean
{"title":"Truss topology optimization with species conserving genetic algorithm","authors":"Jian-Ping Li, F. Campean","doi":"10.1109/UKCI.2014.6930184","DOIUrl":null,"url":null,"abstract":"This paper is to apply the species conserving genetic algorithm (SCGA) to search multiple solutions of truss topology optimization problems in a single run. A real-vector is used to represent the corresponding cross-sectional areas and a member is thought to be existent if its area is bigger than a critical area. A finite element analysis model has been developed to deal with more practical considerations in modeling, such as existences of members, kinematic stability analysis and the computation of stresses and displacements. Cross-sectional areas and node connections are taken as decision variables and optimized simultaneously to minimize the total weight of trusses. Numerical results demonstrate that some truss topology optimization examples have many global and local solutions and different topologies can be found by using the proposed algorithm in a single run and some trusses have smaller weight than the solutions in the literature.","PeriodicalId":315044,"journal":{"name":"2014 14th UK Workshop on Computational Intelligence (UKCI)","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2014.6930184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is to apply the species conserving genetic algorithm (SCGA) to search multiple solutions of truss topology optimization problems in a single run. A real-vector is used to represent the corresponding cross-sectional areas and a member is thought to be existent if its area is bigger than a critical area. A finite element analysis model has been developed to deal with more practical considerations in modeling, such as existences of members, kinematic stability analysis and the computation of stresses and displacements. Cross-sectional areas and node connections are taken as decision variables and optimized simultaneously to minimize the total weight of trusses. Numerical results demonstrate that some truss topology optimization examples have many global and local solutions and different topologies can be found by using the proposed algorithm in a single run and some trusses have smaller weight than the solutions in the literature.
基于物种守恒遗传算法的桁架拓扑优化
应用物种保护遗传算法(SCGA)在一次运行中搜索桁架拓扑优化问题的多个解。用实向量表示相应的横截面积,如果一个构件的面积大于临界面积,则认为该构件存在。建立了一种有限元分析模型,以处理建模中更多的实际考虑,如构件的存在性、运动稳定性分析以及应力和位移的计算。以横截面积和节点连接作为决策变量,同时进行优化,使桁架总重量最小。数值结果表明,一些桁架拓扑优化实例具有多个全局解和局部解,使用该算法可以在一次运行中找到不同的拓扑结构,并且一些桁架的权重小于文献中的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信