Approximate Solutions of Some Boundary Value Problems by Using Operational Matrices of Bernstein Polynomials

K. Shah, T. Abdeljawad, H. Khalil, R. Khan
{"title":"Approximate Solutions of Some Boundary Value Problems by Using Operational Matrices of Bernstein Polynomials","authors":"K. Shah, T. Abdeljawad, H. Khalil, R. Khan","doi":"10.5772/intechopen.90302","DOIUrl":null,"url":null,"abstract":"In this chapter, we develop an efficient numerical scheme for the solution of boundary value problems of fractional order differential equations as well as their coupled systems by using Bernstein polynomials. On using the mentioned polynomial, we construct operational matrices for both fractional order derivatives and integrations. Also we construct a new matrix for the boundary condition. Based on the suggested method, we convert the considered problem to algebraic equation, which can be easily solved by using Matlab. In the last section, numerical examples are provided to illustrate our main results.","PeriodicalId":322265,"journal":{"name":"Functional Calculus","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Calculus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.90302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this chapter, we develop an efficient numerical scheme for the solution of boundary value problems of fractional order differential equations as well as their coupled systems by using Bernstein polynomials. On using the mentioned polynomial, we construct operational matrices for both fractional order derivatives and integrations. Also we construct a new matrix for the boundary condition. Based on the suggested method, we convert the considered problem to algebraic equation, which can be easily solved by using Matlab. In the last section, numerical examples are provided to illustrate our main results.
用Bernstein多项式的运算矩阵近似解若干边值问题
在这一章中,我们利用Bernstein多项式给出了一种求解分数阶微分方程及其耦合系统边值问题的有效数值格式。利用上述多项式,我们构造了分数阶导数和积分的运算矩阵。并构造了一个新的边界条件矩阵。基于所提出的方法,我们将所考虑的问题转化为代数方程,可以很容易地用Matlab求解。在最后一节中,提供了数值示例来说明我们的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信