Adaptive Dynamic Nelson-Siegel Term Structure Model with Applications

Ying Chen, Linlin Niu
{"title":"Adaptive Dynamic Nelson-Siegel Term Structure Model with Applications","authors":"Ying Chen, Linlin Niu","doi":"10.2139/ssrn.2025853","DOIUrl":null,"url":null,"abstract":"We propose an Adaptive Dynamic Nelson–Siegel (ADNS) model to adaptively detect parameter changes and forecast the yield curve. The model is simple yet flexible and can be safely applied to both stationary and nonstationary situations with different sources of parameter changes. For the 3- to 12-months ahead out-of-sample forecasts of the US yield curve from 1998:1 to 2010:9, the ADNS model dominates both the popular reduced-form and affine term structure models; compared to random walk prediction, the ADNS steadily reduces the forecast error measurements by between 20% and 60%. The locally estimated coefficients and the identified stable subsamples over time align with policy changes and the timing of the recent financial crisis.","PeriodicalId":214104,"journal":{"name":"Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets eJournal","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2025853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

We propose an Adaptive Dynamic Nelson–Siegel (ADNS) model to adaptively detect parameter changes and forecast the yield curve. The model is simple yet flexible and can be safely applied to both stationary and nonstationary situations with different sources of parameter changes. For the 3- to 12-months ahead out-of-sample forecasts of the US yield curve from 1998:1 to 2010:9, the ADNS model dominates both the popular reduced-form and affine term structure models; compared to random walk prediction, the ADNS steadily reduces the forecast error measurements by between 20% and 60%. The locally estimated coefficients and the identified stable subsamples over time align with policy changes and the timing of the recent financial crisis.
自适应动态Nelson-Siegel期限结构模型及其应用
提出了一种自适应动态Nelson-Siegel (ADNS)模型来自适应检测参数变化并预测收益率曲线。该模型简单而灵活,可以安全地应用于具有不同参数变化源的平稳和非平稳情况。对于1998:1至2010:9期间美国收益率曲线的3至12个月前样本外预测,ADNS模型在流行的简化形式和仿射期限结构模型中均占主导地位;与随机行走预测相比,ADNS稳定地减少了20%到60%的预测误差测量。随着时间的推移,局部估计的系数和确定的稳定子样本与政策变化和最近金融危机的时间一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信