Registration of multi-sensor remote sensing imagery by gradient-based optimization of cross-cumulative residual entropy

M. Pickering, Yi Xiao, X. Jia
{"title":"Registration of multi-sensor remote sensing imagery by gradient-based optimization of cross-cumulative residual entropy","authors":"M. Pickering, Yi Xiao, X. Jia","doi":"10.1117/12.777016","DOIUrl":null,"url":null,"abstract":"For multi-sensor registration, previous techniques typically use mutual information (MI) rather than the sum-of-the-squared difference (SSD) as the similarity measure. However, the optimization of MI is much less straightforward than is the case for SSD-based algorithms. A new technique for image registration has recently been proposed that uses an information theoretic measure called the Cross-Cumulative Residual Entropy (CCRE). In this paper we show that using CCRE for multi-sensor registration of remote sensing imagery provides an optimization strategy that converges to a global maximum with significantly less iterations than existing techniques and is much less sensitive to the initial geometric disparity between the two images to be registered.","PeriodicalId":133868,"journal":{"name":"SPIE Defense + Commercial Sensing","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.777016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

For multi-sensor registration, previous techniques typically use mutual information (MI) rather than the sum-of-the-squared difference (SSD) as the similarity measure. However, the optimization of MI is much less straightforward than is the case for SSD-based algorithms. A new technique for image registration has recently been proposed that uses an information theoretic measure called the Cross-Cumulative Residual Entropy (CCRE). In this paper we show that using CCRE for multi-sensor registration of remote sensing imagery provides an optimization strategy that converges to a global maximum with significantly less iterations than existing techniques and is much less sensitive to the initial geometric disparity between the two images to be registered.
基于交叉累积残差熵梯度优化的多传感器遥感影像配准
对于多传感器配准,以前的技术通常使用互信息(MI)而不是平方和差(SSD)作为相似性度量。然而,MI的优化并不像基于ssd的算法那样简单。最近提出了一种新的图像配准技术,该技术使用了一种称为交叉累积残差熵(CCRE)的信息理论度量。在本文中,我们表明使用CCRE进行遥感图像的多传感器配准提供了一种优化策略,该策略收敛到全局最大值,迭代次数比现有技术少得多,并且对待配准的两幅图像之间的初始几何差异不那么敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信