Mobile robot path planning in environments cluttered with non-convex obstacles using particle swarm optimization

Muhammad Shahab Alam, M. U. Rafique
{"title":"Mobile robot path planning in environments cluttered with non-convex obstacles using particle swarm optimization","authors":"Muhammad Shahab Alam, M. U. Rafique","doi":"10.1109/ICCAR.2015.7165997","DOIUrl":null,"url":null,"abstract":"Generally workspaces of mobile robots are cluttered with obstacles of different sizes and shapes. Majority of the path planning algorithms get stuck in non-convex obstacles pertaining to local minima. Particle Swarm Optimization (PSO) is by comparison simple and readily intelligible yet a very powerful optimization technique which makes it an apt choice for path finding problems in complex environments. This paper presents a particle swarm optimization based path planning algorithm developed for finding a shortest collision-free path for a mobile robot in an environment strewed with non-convex obstacles. The proposed method uses random sampling and finds the optimal path while avoiding non-convex obstacles without exhaustive search. Detailed simulation results show the functionality and effectiveness of the proposed algorithm in different scenarios.","PeriodicalId":422587,"journal":{"name":"2015 International Conference on Control, Automation and Robotics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Control, Automation and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAR.2015.7165997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Generally workspaces of mobile robots are cluttered with obstacles of different sizes and shapes. Majority of the path planning algorithms get stuck in non-convex obstacles pertaining to local minima. Particle Swarm Optimization (PSO) is by comparison simple and readily intelligible yet a very powerful optimization technique which makes it an apt choice for path finding problems in complex environments. This paper presents a particle swarm optimization based path planning algorithm developed for finding a shortest collision-free path for a mobile robot in an environment strewed with non-convex obstacles. The proposed method uses random sampling and finds the optimal path while avoiding non-convex obstacles without exhaustive search. Detailed simulation results show the functionality and effectiveness of the proposed algorithm in different scenarios.
基于粒子群算法的非凸障碍物环境下移动机器人路径规划
一般来说,移动机器人的工作空间都布满了不同大小和形状的障碍物。大多数路径规划算法都陷入了与局部最小值有关的非凸障碍物中。粒子群优化(PSO)是一种简单易懂、功能强大的优化技术,是解决复杂环境下寻路问题的理想选择。提出了一种基于粒子群优化的路径规划算法,用于移动机器人在非凸障碍物环境中寻找最短的无碰撞路径。该方法采用随机抽样方法,在避免非凸障碍物的同时找到最优路径,无需穷举搜索。详细的仿真结果表明了该算法在不同场景下的功能性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信