Application of Chinese sentiment categorization to digital products reviews

Hongying Zan, Kuizhong Kou, Jiale Tian
{"title":"Application of Chinese sentiment categorization to digital products reviews","authors":"Hongying Zan, Kuizhong Kou, Jiale Tian","doi":"10.1109/NLPKE.2010.5587788","DOIUrl":null,"url":null,"abstract":"Sentiment categorization have been widely explored in many fields, such as government policy, information monitoring, product tracking, etc. This paper adopts k-NN, Naive Bayes and SVM classifiers to categorize sentiments contained in on-line Chinese reviews on digital products. Our experimental results show that combining the words and phrases with sentiment orientation as hybrid features, SWM classifier achieves an accuracy of 96,47%, which is words of all parts of speech as features.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLPKE.2010.5587788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sentiment categorization have been widely explored in many fields, such as government policy, information monitoring, product tracking, etc. This paper adopts k-NN, Naive Bayes and SVM classifiers to categorize sentiments contained in on-line Chinese reviews on digital products. Our experimental results show that combining the words and phrases with sentiment orientation as hybrid features, SWM classifier achieves an accuracy of 96,47%, which is words of all parts of speech as features.
中文情感分类在数字产品评论中的应用
情感分类在政府政策、信息监控、产品跟踪等领域得到了广泛的探索。本文采用k-NN、朴素贝叶斯和支持向量机分类器对数字产品中文在线评论中的情感进行分类。实验结果表明,将带有情感倾向的词和短语作为混合特征,SWM分类器在所有词性词作为特征的情况下,准确率达到96,47%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信