{"title":"Application of Chinese sentiment categorization to digital products reviews","authors":"Hongying Zan, Kuizhong Kou, Jiale Tian","doi":"10.1109/NLPKE.2010.5587788","DOIUrl":null,"url":null,"abstract":"Sentiment categorization have been widely explored in many fields, such as government policy, information monitoring, product tracking, etc. This paper adopts k-NN, Naive Bayes and SVM classifiers to categorize sentiments contained in on-line Chinese reviews on digital products. Our experimental results show that combining the words and phrases with sentiment orientation as hybrid features, SWM classifier achieves an accuracy of 96,47%, which is words of all parts of speech as features.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLPKE.2010.5587788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Sentiment categorization have been widely explored in many fields, such as government policy, information monitoring, product tracking, etc. This paper adopts k-NN, Naive Bayes and SVM classifiers to categorize sentiments contained in on-line Chinese reviews on digital products. Our experimental results show that combining the words and phrases with sentiment orientation as hybrid features, SWM classifier achieves an accuracy of 96,47%, which is words of all parts of speech as features.