TeAw: Text-Aware Few-Shot Remote Sensing Image Scene Classification

Kaihui Cheng, Chule Yang, Zunlin Fan, Dayan Wu, Naiyang Guan
{"title":"TeAw: Text-Aware Few-Shot Remote Sensing Image Scene Classification","authors":"Kaihui Cheng, Chule Yang, Zunlin Fan, Dayan Wu, Naiyang Guan","doi":"10.1109/ICASSP49357.2023.10095523","DOIUrl":null,"url":null,"abstract":"The recent advance has shown that few-shot learning may be a promising way to alleviate the data reliance of remote sensing image scene classification. However, most existing works focus on extracting distinguishable features only from visual modality, while the problem of learning knowledge from multiple modalities has barely been visited. In this work, we propose a text-aware framework for few-shot remote sensing image scene classification (TeAw). Specifically, TeAw converts the class names to more detailed text descriptions and extracts text features using a pre-trained text encoder. Mean-while, TeAw obtains image features via an image encoder. Then we compute the correlation between the text and the image features, which helps the model grasp the core concept of the input image. Finally, TeAw calculates the similarity of local features between supports and queries to get the predictions. Extensive experiments show the outperformance of our TeAw compared with other SOTA methods.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10095523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The recent advance has shown that few-shot learning may be a promising way to alleviate the data reliance of remote sensing image scene classification. However, most existing works focus on extracting distinguishable features only from visual modality, while the problem of learning knowledge from multiple modalities has barely been visited. In this work, we propose a text-aware framework for few-shot remote sensing image scene classification (TeAw). Specifically, TeAw converts the class names to more detailed text descriptions and extracts text features using a pre-trained text encoder. Mean-while, TeAw obtains image features via an image encoder. Then we compute the correlation between the text and the image features, which helps the model grasp the core concept of the input image. Finally, TeAw calculates the similarity of local features between supports and queries to get the predictions. Extensive experiments show the outperformance of our TeAw compared with other SOTA methods.
文本感知的少拍遥感图像场景分类
近年来的研究表明,少拍学习可能是一种很有前途的方法,可以减轻遥感图像场景分类的数据依赖性。然而,现有的研究大多集中在从视觉模态中提取可区分的特征,而从多模态中学习知识的问题很少被研究。在这项工作中,我们提出了一个文本感知框架,用于遥感图像场景分类(TeAw)。具体来说,TeAw将类名转换为更详细的文本描述,并使用预训练的文本编码器提取文本特征。同时,TeAw通过图像编码器获取图像特征。然后我们计算文本和图像特征之间的相关性,这有助于模型掌握输入图像的核心概念。最后,TeAw计算支持和查询之间的局部特征的相似性以获得预测。大量的实验表明,与其他SOTA方法相比,我们的TeAw具有优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信