Morphing Planar Graph Drawings Through 3D

K. Buchin, W. Evans, Fabrizio Frati, I. Kostitsyna, M. Löffler, Tim Ophelders, A. Wolff
{"title":"Morphing Planar Graph Drawings Through 3D","authors":"K. Buchin, W. Evans, Fabrizio Frati, I. Kostitsyna, M. Löffler, Tim Ophelders, A. Wolff","doi":"10.48550/arXiv.2210.05384","DOIUrl":null,"url":null,"abstract":". In this paper, we investigate crossing-free 3D morphs between planar straight-line drawings. We show that, for any two (not necessarily topologically equivalent) planar straight-line drawings of an n -vertex planar graph, there exists a piecewise-linear crossing-free 3D morph with O ( n 2 ) steps that transforms one drawing into the other. We also give some evidence why it is difficult to obtain a linear lower bound (which exists in 2D) for the number of steps of a crossing-free 3D morph.","PeriodicalId":266155,"journal":{"name":"Conference on Current Trends in Theory and Practice of Informatics","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Current Trends in Theory and Practice of Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.05384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

. In this paper, we investigate crossing-free 3D morphs between planar straight-line drawings. We show that, for any two (not necessarily topologically equivalent) planar straight-line drawings of an n -vertex planar graph, there exists a piecewise-linear crossing-free 3D morph with O ( n 2 ) steps that transforms one drawing into the other. We also give some evidence why it is difficult to obtain a linear lower bound (which exists in 2D) for the number of steps of a crossing-free 3D morph.
通过3D变形平面图形绘图
。本文研究平面直线图之间的无交叉三维变形。我们证明,对于任意两个(不一定是拓扑等价的)n顶点平面图的平面直线图,存在一个O (n 2)步的分段线性无交叉3D变形,将一个图转换为另一个图。我们也给出了一些证据,为什么很难获得一个线性下界(存在于二维)的步骤数的一个无交叉的三维变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信